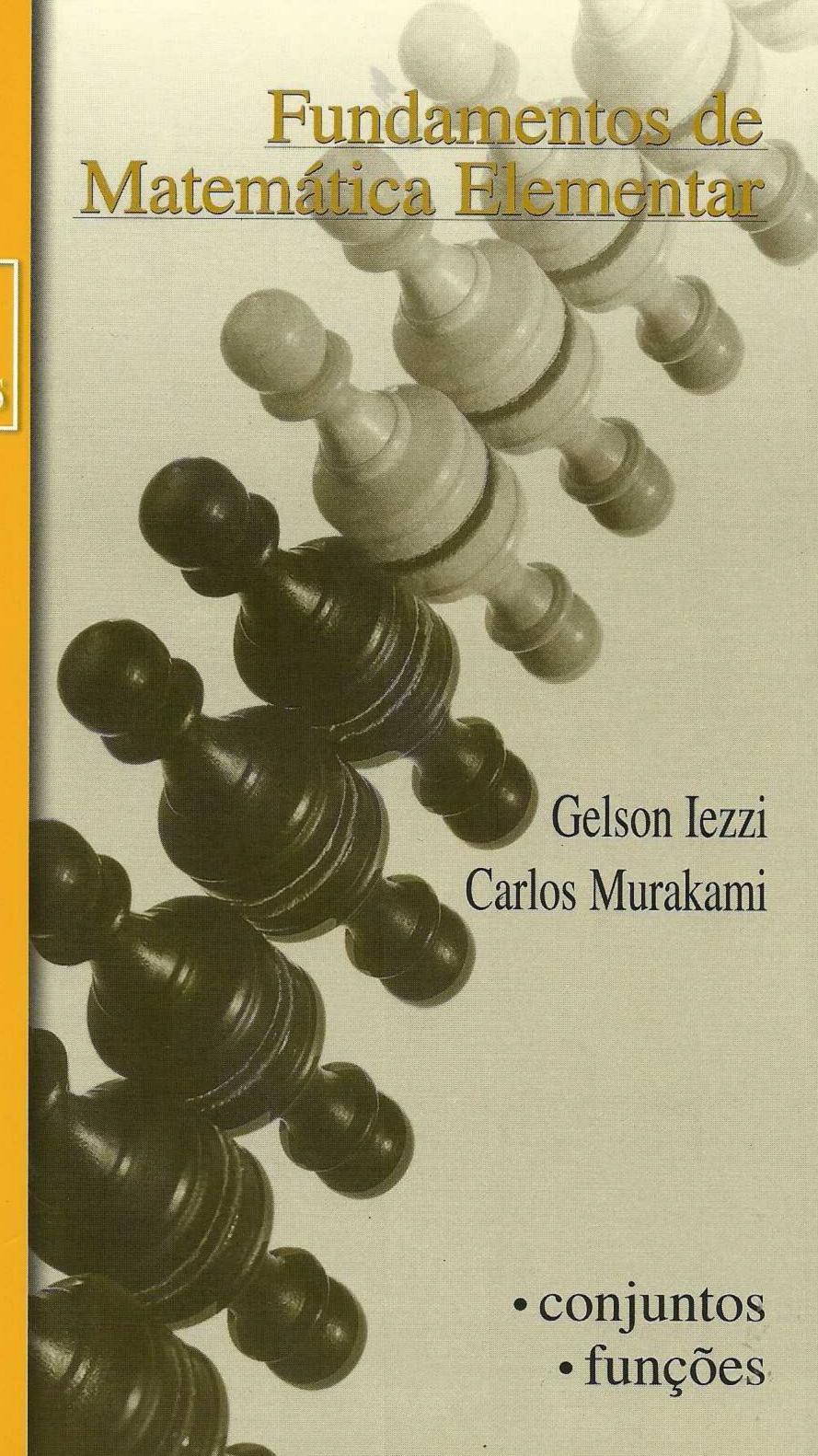
NOVOS TESTES DE VESTIBULARES



GELSON IEZZI CARLOS MURAKAMI

FUNDAMENTOS DE

MATEMÁTICA 1 ELEMENTAR

CONJUNTOS FUNÇÕES

84 exercícios resolvidos 484 exercícios propostos com resposta 398 testes de vestibulares com resposta

7ª edição

Sumário

CAP	ÍTULO I — NOÇÕES DE LÓGICA
I.	Proposição
	Negação
III.	Proposição composta — conectivos
IV.	Condicionais
	Tautologias
	Proposições logicamente falsas
	Relação de implicação
	Relação de equivalência
	Sentenças abertas, quantificadores
. X.	Como negar proposições
CAP	ÍTULO II — CONJUNTOS
I.	Conjunto — Elemento — Pertinência
II.	Descrição de um conjunto
III.	Conjunto unitário — Conjunto vazio
IV.	Conjunto universo
V.	Conjuntos iguais
	Subconjuntos
VII.	Reunião de conjuntos
	Interseção de conjuntos
	Propriedades
X.	Diferença de conjuntos
	Complementar de B em A
Leitu	ra: Cantor e a teoria dos conjuntos
CAP	ÍTULO III — CONJUNTOS NUMÉRICOS
I.	Conjunto dos números naturais
II.	Conjunto dos números inteiros
	Conjunto dos números racionais
IV.	Conjunto dos números reais
V.	111001 - 44100 - 11111111111111111111111
VI.	Conjunto dos números complexos
	Resumo
	ndice: Princípio da indução finita
Leitu	ra: Eudóxio e os incomensuráveis

	TULO IV — RELAÇÕES
	Par ordenado
II.	Representação gráfica
III.	Produto cartesiano
IV.	Relação binária
V.	Domínio e imagem
VI.	Relação inversa
VII.	Propriedades das relações
CAPI	TULO V — INTRODUÇÃO ÀS FUNÇÕES
I.	Conceito de função
	Definição de função
	Notação das funções
	Domínio e imagem
	Funções iguais
	ra: Stevin e as frações decimais
CAPI	TULO VI — FUNÇÃO CONSTANTE — FUNÇÃO AFIM
	Função constante
II.	Função identidade
III.	Função linear
IV.	Função afim
	Gráfico
VI.	Imagem
VII.	Coeficientes da função afim
VIII.	Zero da função afim
	Funções crescentes e decrescentes
X.	Crescimento/decréscimo da função afim
	Sinal de uma função
	Sinal da função afim
	Inequações
	Inequações simultâneas
	Inequações-produto
XVI.	Inequações-quociente
	ÍTULO VII — FUNÇÕES QUADRÁTICAS
I.	Definição
	Gráfico
	Concavidade
10000	Forma canônica
	Zeros
	Máximo e mínimo
VII.	Vértice da parábola
	Imagem
	Eixo de simetria
	Informações que auxiliam a construção do gráfico
XI.	Sinal da função quadrática
XII.	Inequação do 2º grau
XIII.	Comparação de um número real com as raízes da equação
	do 2º grau

XIV. Sinais das raízes da equação do 2º grau	180 183	
CAPÍTULO VIII — FUNÇÃO MODULAR I. Função definida por várias sentenças abertas II. Módulo	185 185 188 189 196 200 205	
CAPÍTULO IX — OUTRAS FUNÇÕES ELEMENTARES I. Função $f(x) = x^3$ II. Função recíproca III. Função máximo inteiro	207 207 208 212	
CAPÍTULO X — FUNÇÃO COMPOSTA — FUNÇÃO INVERSA I. Função composta II. Função sobrejetora III. Função injetora IV. Função bijetora V. Função inversa Leitura: Bertrand Russel e o logicismo	214 214 222 223 224 234 249	
APÊNDICE I — EQUAÇÕES IRRACIONAIS	251	
APÊNDICE II — INEQUAÇÕES IRRACIONAIS	262	
RESPOSTAS DOS EXERCÍCIOS	272	
TESTES DE VESTIBULARES	315	
RESPOSTAS DOS TESTES	379	

Noções de Lógica

I. Proposição

1. Chama-se *proposição* ou *sentença* toda oração declarativa que pode ser classificada em verdadeira ou em falsa.

Observemos que toda proposição apresenta três características obrigatórias:

- 1ª) sendo oração, tem sujeito e predicado;
- 2ª) é declarativa (não é exclamativa nem interrogativa);
- 3^{a}) tem um, e somente um, dos dois valores lógicos: ou é verdadeira (V) ou é falsa (F).

Exemplos

São proposições:

- a) Nove é diferente de cinco. $(9 \neq 5)$
- b) Sete é maior que três. (7 > 3)
- c) Dois é um número inteiro. $(2 \in \mathbb{Z})$
- d) Três é divisor de onze. (3111)
- e) Quatro vezes cinco é igual a vinte. $(4 \cdot 5 = 20)$

Dessas proposições, todas são verdadeiras exceto d.

Não são consideradas proposições as frases:

- f) Três vezes cinco mais um. $(3 \cdot 5 + 1)$
- g) A raiz quadrada de dois é número racional? ($\sqrt{2} \in \mathbb{Q}$?)
- h) O triplo de um número menos um é igual a onze. (3x 1 = 11)

A frase f não tem predicado, a frase g é interrogativa e a frase h não pode ser classificada em verdadeira ou falsa.

II. Negação

2. A partir de uma proposição p qualquer, sempre podemos construir outra, denominada negação de p e indicada com o símbolo $\sim p$.

Exemplos

- a) p: Nove é diferente de cinco. $(9 \neq 5)$
 - \sim p: Nove é igual a cinco. (9 = 5)
- b) p: Sete é maior que três. (7 > 3)
 - \sim p: Sete é menor ou igual a três. (7 \leq 3)
- c) p: Dois é um número inteiro. $(2 \in \mathbb{Z})$
 - ~ p: Dois não é um número inteiro. (2 ∉ **Z**)
- d) p: Três é divisor de onze. (3|11)
 - \sim p: Três não é divisor de onze. (3 11)
- e) p: Quatro vezes cinco é igual a vinte. $(4 \cdot 5 = 20)$
 - \sim p: Quatro vezes cinco é diferente de vinte. (4 · 5 \neq 20)

Para que $\sim p$ seja realmente uma proposição devemos ser capazes de classificá-la em verdadeira (V) ou falsa (F). Para isso vamos postular (decretar) o seguinte critério de classificação:

A proposição $\sim p$ tem sempre o valor oposto de p, isto é, $\sim p$ é verdadeira quando p é falsa e $\sim p$ é falsa quando p é verdadeira.

Esse critério está resumido na tabela ao lado, denominada tabela-verdade da proposição $\sim p$.

p	∼p
V	F
F	V

Assim, reexaminando os exemplos anteriores, temos que $\sim p$ é verdadeira no exemplo d e $\sim p$ é falsa nos demais.

EXERCÍCIOS

 Quais das sentenças abaixo são proposições? No caso das proposições, quais são verdadeiras?

a)
$$5 \cdot 4 = 20$$

b)
$$5 - 4 = 3$$

c)
$$2 + 7 \cdot 3 = 5 \cdot 4 + 3$$

d)
$$5(3 + 1) = 5 \cdot 3 + 5 \cdot 1$$

e)
$$1 + 3 \neq 1 + 6$$

f)
$$(-2)^5 \ge (-2)^3$$

g)
$$3 + 4 > 0$$

h)
$$11 - 4 \cdot 2$$

Qual é a negação de cada uma das seguintes proposições? Que negações são verdadeiras?

a)
$$3 \cdot 7 = 21$$

b)
$$3 \cdot (11 - 7) \neq 5$$

c)
$$3 \cdot 2 + 1 > 4$$

d)
$$5 \cdot 7 - 2 \le 5 \cdot 6$$

e)
$$\left(\frac{1}{2}\right)^7 < \left(\frac{1}{2}\right)^3$$

f)
$$\sqrt{2}$$
 < 1

g)
$$-(-4) \ge 7$$

III. Proposição composta - Conectivos

A partir de proposições dadas podemos construir novas proposições mediante o emprego de dois símbolos lógicos chamados conectivos: conectivo A (lê-se: e) e o conectivo A (lê-se: e) e o conectivo A (lê-se: ou).

3. Conectivo A

Colocando o conectivo \land entre duas proposições p e q, obtemos uma nova proposição, $p \land q$, denominada conjunção das sentenças p e q.

1°) p:
$$2 > 0$$

q:
$$2 \neq 1$$

p \(\text{q: } 2 > 0 \) e $2 \neq 1$

2°) p:
$$-2 < -1$$

q:
$$(-2)^2 < (-1)^2$$

$$p \wedge q$$
: $-2 < -1 e (-2)^2 < (-1)^2$

- 3°) p: um quadrado de lado a tem diagonal 2a q: um quadrado de lado a tem área a^2 p \wedge q: um quadrado de lado a tem diagonal 2a e área a^2
- 4°) p: 2|5 (2 é divisor de 5) q: 3|5 (3 é divisor de 5) p \(\text{q} : 2|5 \) e 3|5 (2 e 3 são divisores de 5)

Vamos postular um critério para estabelecer o valor lógico (V ou F) de uma conjunção a partir dos valores lógicos (conhecidos) das proposições p e q:

A conjunção $p \land q$ é verdadeira se p e q são ambas verdadeiras; se ao menos uma delas for falsa, então $p \land q$ é falsa.

Esse critério está resumido na tabela ao lado, em que são examinadas todas as possibilidades para $p \in q$. Essa tabela é denominada tabela-verdade da proposição $p \land q$.

p	q	$p \wedge q$
V	V	V
V	F	F
F F	V	F
F	F	F

Reexaminando os exemplos anteriores, temos:

- 1°) p: 2 > 0 (V) q: $2 \neq 1$ (V) então: p \land q: 2 > 0 e $2 \neq 1$ (V)
- 2°) p: -2 < -1 (V) q: $(-2)^2 < (-1)^2$ (F) então: p \land q: -2 < -1 e $(-2)^2 < (-1)^2$ (F)
- 3°.) p: um quadrado de lado a tem diagonal 2a (F)
 q: um quadrado de lado a tem área a² (V)
 então:
 p ∧ q: um quadrado de lado a tem diagonal 2a e área a² (F)
- 4°.) p: 215 (F) q: 315 (F) então: p \(\cdot q: 215 \) e 315 (F)

4. Conectivo v

Colocando o conectivo \vee entre duas proposições p e q, obtemos uma nova proposição, $p \vee q$, denominada disjunção das sentenças p e q.

Exemplos

- 1°) p: 5 > 0 (cinco é maior que zero) q: 5 > 1 (cinco é maior que um) p v q: 5 > 0 ou 5 > 1 (cinco é maior que zero ou maior que um)
- 2°) p: 3 = 3 (três é igual a três)
 q: 3 < 3 (três é menor que três)
 p ∨ q: 3 ≤ 3 (três é menor ou igual a três)
- 3°) p: 10 é número primo
 q: 10 é número composto
 q v q: 10 é número primo ou número composto
- 4°) p: $3^4 < 2^6$ q: $2^2 < (-3)^5$ p v q: $3^4 < 2^6$ ou $2^2 < (-3)^5$

Vamos postular um critério para decidir o valor lógico (V ou F) de uma disjunção a partir dos valores lógicos (conhecidos) das proposições p e q:

A disjunção $p \lor q$ é verdadeira se ao menos uma das proposições p ou q é verdadeira; se p e q são ambas falsas, então $p \lor q$ é falsa.

Esse critério está resumido na tabela ao lado, denominada tabela-verdade da proposição $p \vee q$.

p	q	pvq
V	V	may at
V	F	no o V
F	V	V
F	F	F

Revendo os exemplos anteriores, temos:

1°) p:
$$5 > 0$$
 (V)
q: $5 > 1$ (V)
então:
p v q: $5 > 0$ ou $5 > 1$ (V)

- 2°) p: 3 = 3 (V) q: 3 < 3 (F) então: p v q: $3 \le 3$ (V)
- 3°) p: 10 é número primo (F) q: 10 é número composto (V) então:
 - p v q: 10 é número primo ou composto (V)
- 4°) p: $3^4 < 2^6$ (F) q: $2^2 < (-3)^5$ (F) então: p v q: $3^4 < 2^6$ ou $2^2 < (-3)^5$ (F)

EXERCÍCIO

- Classifique em verdadeira ou falsa cada uma das seguintes proposições compostas:
 - a) 3 > 1 e 4 > 2
 - b) 3 > 1 ou 3 = 1
 - c) 2|4 ou 2|(4+1)
 - d) $3(5 + 2) = 3 \cdot 5 + 3 \cdot 2$ e 317
- e) $\frac{1}{2} < \frac{3}{4}$ ou 5|11
- f) $(-1)^6 = -1$ e $2^5 < (-2)^7$
- g) $\sqrt{16} = 6$ ou mdc (4, 7) = 2

IV. Condicionais

Ainda a partir de proposições dadas podemos construir novas proposições mediante o emprego de outros dois símbolos lógicos chamados *condicionais*: o condicional $se \dots então \dots$ (símbolo: \rightarrow) e o condicional ... se, e somente se, ... (símbolo: \leftrightarrow).

Condicional →

Colocando o condicional \rightarrow entre duas proposições p e q, obtemos uma nova proposição, $p \rightarrow q$, que se lê: "se p, então q", "p é condição necessária para q", "q é condição suficiente para p".

No condicional $p \rightarrow q$, a proposição p é chamada *antecedente* e q é chamada *conseqüente*.

Exemplos

- 1°) p: dois é divisor de quatro (214)
 - q: quatro é divisor de vinte (4|20)
 - p \rightarrow q: se dois é divisor de quatro, então quatro é divisor de vinte (2|4 \rightarrow 4|20)
- 2°) p: dois vezes cinco é igual a dez $(2 \cdot 5 = 10)$
 - q: três é divisor de dez (3|10)
 - p \rightarrow q: se dois vezes cinco é igual a dez, então três é divisor de dez $(2 \cdot 5 = 10 \rightarrow 3|10)$
- 3°) p: cinco é menor que dois (5 < 2)
 - q: dois é número inteiro $(2 \in \mathbb{Z})$
 - p \rightarrow q: se cinco é menor que dois, então dois é número inteiro $(5 < 2 \rightarrow 2 \in \mathbb{Z})$
- 4°) p: um meio é menor que um terço $\left(\frac{1}{2} < \frac{1}{3}\right)$
 - q: três é igual a cinco (3 = 5)
 - p → q: se um meio é menor que um terço, então três é igual a cinco $\left(\frac{1}{2} < \frac{1}{3} \rightarrow 3 = 5\right)$

Vamos postular um critério de classificação para a proposição $p \rightarrow q$ baseado nos valores lógicos de p e q:

O condicional $p \rightarrow q$ é falso somente quando p é verdadeira e q é falsa; caso contrário, $p \rightarrow q$ é verdadeiro.

Esse critério está resumido na tabela ao lado, denominada tabelaverdade da proposição $p \rightarrow q$.

р	q	$p \rightarrow q$
V	V	V
V	F	F
F F	V	V
F	F	V

Revendo os exemplos dados, temos:

- 1°) p é V e q é V, então p \rightarrow q é V.
- 2°) pé V e q é F, então p \rightarrow q é F.
- 3°) pé F e q é V, então p \rightarrow q é V.
- 4°) p é F e q é F, então p \rightarrow q é V.

Condicional ↔

Colocando o condicional \Leftrightarrow entre duas proposições p e q, obtemos uma nova proposição, $p \leftrightarrow q$, que se lê: "p se, e somente se, q", "p é condição necessária e suficiente para q", "q é condição necessária e suficiente para p" ou "se p, então q e reciprocamente".

Exemplos

2°) p:
$$\frac{3}{2} = \frac{6}{4}$$

q: $3 \cdot 4 \neq 6 \cdot 2$
p \Leftrightarrow q: $\frac{3}{2} = \frac{6}{4} \Leftrightarrow 3 \cdot 4 \neq 6 \cdot 2$

3°.) p:
$$6 = 12 : 3$$

q: $3 \cdot 6 = 18$
p \Leftrightarrow q: $6 = 12 : 3 \Leftrightarrow 3 \cdot 6 = 18$

4°) p:
$$4 \le 3$$

q: $4 \cdot 5 \le 3 \cdot 5$
p \Leftrightarrow q: $4 \le 3 \Leftrightarrow 4 \cdot 5 \le 3 \cdot 5$

Vamos postular para o condicional $p \leftrightarrow q$ o seguinte critério de classificação:

O condicional \Leftrightarrow é verdadeiro somente quando p e q são ambas verdadeiras ou ambas falsas; se isso não acontecer, o condicional ↔ é falso.

Assim a tabela-verdade da proposição $p \leftrightarrow q$ é a que está ao lado.

p	q	$p \leftrightarrow q$
V	V	V
V	F	F
F	V	F
F F	F	V

Revendo os exemplos dados, temos:

- 1°) pé V e q é V, então p \Leftrightarrow q é V.
- 2°) pé V e q é F, então p \Leftrightarrow q é F.
- 3°) p é F e q é V, então p \Leftrightarrow q é F. 4°) p é F e q é F, então p \Leftrightarrow q é V.

EXERCÍCIOS

4. Classifique em verdadeira ou falsa cada uma das proposições abaixo.

a)
$$2-1=1 \rightarrow 5+7=3\cdot 4$$

b)
$$2^2 = 4 \Leftrightarrow (-2)^2 = 4$$

c)
$$5 + 7 \cdot 1 = 10 \rightarrow 3 \cdot 3 = 9$$

d) mdc
$$(3, 6) = 1 \Leftrightarrow 4 \text{ \'e n\'umero primo}$$

e)
$$2 \mid 8 \to \text{mmc}(2, 8) = 2$$

f)
$$6 \leqslant 2 \Leftrightarrow 6 - 2 \geqslant 0$$

g)
$$\frac{3}{5} < \frac{2}{7} \rightarrow 3 \cdot 7 = 2 \cdot 5$$

5. Admitindo que p e q são verdadeiras e r é falsa, determine o valor (V ou F) de cada proposição abaixo.

a)
$$p \rightarrow r$$

b)
$$p \leftrightarrow q$$

c)
$$r \rightarrow p$$

d)
$$(p \vee r) \leftrightarrow q$$

e)
$$p \rightarrow (q \rightarrow r)$$

f)
$$p \rightarrow (q \vee r)$$

g)
$$\sim p \leftrightarrow \sim q$$

h)
$$\sim p \leftrightarrow r$$

6. Sendo a proposição p → (r ∨ s) falsa e a proposição (q ∧ ~s) ↔ p verdadeira, classifique em verdadeira ou falsa as afirmações p, q, r e s.

V. Tautologias

7. Seja v uma proposição formada a partir de outras (p, q, r, ...) mediante o emprego de conectivos $(v \text{ ou } \wedge)$ ou de modificador (\sim) ou de condicionais $(\rightarrow \text{ ou } \leftrightarrow)$. Dizemos que v é uma tautologia ou proposição logicamente verdadeira quando v tem o valor lógico V (verdadeira) independentemente dos valores lógicos de p, q, etc.

Assim a tabela-verdade de uma tautologia v apresenta só V na coluna de v.

1°)
$$(p \land \sim p) \rightarrow (q \lor p)$$
 é uma tautologia, pois:

p	q	∼p	р∧∼р	qvp	$(p \land \sim p) \to (q \lor p)$
V	V	F	F	V	v
V	F	F	F	V	v
F	V	V	F	V	VV
F	F	V	F	F	V

2°) $\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$ é uma tautologia, pois:

p	q	p ^ q	\sim (p \wedge q)	~p	∼q	$\sim p \vee \sim q$	$\sim (p \land q) \leftrightarrow (\sim p \lor \sim q)$
V	v	v	·F	F	F	F	V
V	F	F	V	F	V	V	V
F	V	F	218 - V runo	V	F	V	3) 2 - 1 V 1 - 5 (8
F	F	F	V > 3	V	V	V	$\mathbf{v} = \mathbf{v} - \mathbf{v} = \mathbf{v} \cdot \mathbf{v}$

VI. Proposições logicamente falsas

8. Seja f uma proposição formada a partir de outras (p, q, r, ...) mediante o emprego de conectivos $(v ou \land)$ ou de modificador (\sim) ou de condicionais $(\rightarrow ou \leftrightarrow)$. Dizemos que f é uma proposição logicamente falsa quando f tem o valor lógico F (falsa) independentemente dos valores lógicos de p, q, etc.

Assim, a tabela-verdade de uma proposição logicamente falsa f apresenta só F na coluna de f.

Exemplos

1°) $p \wedge \sim p$ é proposição logicamente falsa, pois:

р	~p	p ∧ ~p
V	F	F F
F	V	F

2°) (p v
$$\sim$$
q) \leftrightarrow (\sim p \wedge q)

p	q	∼p	∼q	p v ∼q	~p∧q	$(p \lor \sim q) \leftrightarrow (\sim p \land q)$
V	V	F	F	V	F	F. F.
V	F	F	V	V	F	F
F	V	V	F	F	V	F
F	F	V	V	V	F	F

VII. Relação de implicação

9. Dadas as proposições p e q, dizemos que "p implica q" quando na tabela de p e q não ocorre VF em nenhuma linha, isto é, quando não temos simultaneamente p verdadeira e q falsa.

Quando p implica q, indicamos $p \Rightarrow q$.

Observações

- 1. Notemos que p implica q quando o condicional $p \rightarrow q$ é verdadeiro.
- 2ª) Todo teorema é uma implicação da forma

Assim, demonstrar um teorema significa mostrar que não ocorre o caso de a hipótese ser verdadeira e a tese falsa.

Exemplos

- 1°) $2|4 \Rightarrow 2|4 \cdot 5$
- significa dizer que o condicional "se 2 é divisor de 4, então 2 é divisor de $4 \cdot 5$ " é verdadeiro.
- 2°.) p é positivo e primo \Rightarrow mdc (p, p²) = p quer dizer que o condicional "se p é número primo e positivo, então o máximo divisor comum de p e p² é p" é verdadeiro.

VIII. Relação de equivalência

10. Dadas as proposições p e q, dizemos que "p é equivalente a q" quando p e q têm tabelas-verdades iguais, isto é, quando p e q têm sempre o mesmo valor lógico.

Quando p é equivalente a q, indicamos: $p \Leftrightarrow q$.

Observações

- 1^a) Notemos que p equivale a q quando o condicional $p \leftrightarrow q$ é verdadeiro.
- 2ª) Todo teorema, cujo recíproco também é verdadeiro, é uma equivalência.

hipótese ⇔ tese

Exemplos

1°)
$$(p \rightarrow q) \Leftrightarrow (\sim q \rightarrow \sim p)$$

р	q	$p \rightarrow q$	∼q	∼p	$\sim q \rightarrow \sim p$
V	V	V	F	e fasa.	y verdVleira e
V	F	F	V	F	solim Fra ob
F	V	V	F	V	V
F	F	V	V	V	V

2°.) $2 \mid 8 \Leftrightarrow \text{mdc}(2, 8) = 2$ significa dizer que é verdadeiro o bicondicional "2 é divisor de 8 se, e somente se, o máximo divisor comum de 2 e 8 é 2".

EXERCÍCIOS

7. Verifique, por meio das tabelas-verdades, a validade das equivalências abaixo.

c) da conjunção relativamente à disjunção
 p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r)

 $p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$

 $p \wedge (p \vee q) \Leftrightarrow p$

 $p \vee (p \wedge q) \Leftrightarrow p$

 $\sim (p \land q) \Leftrightarrow \sim p \lor \sim q$

 $\sim (p \vee q) \Leftrightarrow \sim p \wedge \sim q$

d) da negação

 $\sim (\sim p) \Leftrightarrow p$

a) da conjunção

$$p \wedge q \Leftrightarrow q \wedge p$$

 $(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$

$$p \wedge p \Leftrightarrow p$$

$$p \land v \Leftrightarrow p$$

$$p \land f \Leftrightarrow f$$

b) da disjunção

$$p \vee f \Leftrightarrow p$$

em que p, q, r são proposições quaisquer, v é uma tautologia e f uma proposição logicamente falsa.

logicamente faisa.

IX. Sentenças abertas, quantificadores

11. Há expressões como:

a)
$$x + 1 = 7$$

b)
$$x > 2$$

c)
$$x^3 = 2x^2$$

que contêm variáveis e cujo valor lógico (verdadeira ou falsa) vai depender do valor atribuído à variável.

Nos exemplos citados temos:

- a) x + I = 7 é verdadeira se trocarmos x por 6 e é falsa para qualquer outro valor dado a x:
- b) x > 2 é verdadeira, por exemplo, para x = 0;
- c) $x^3 = 2x^2$ é verdadeira se trocarmos x por 0 ($0^3 = 2 \cdot 0^2$) ou $2(2^3 = 2 \cdot 2^2)$ e é falsa para qualquer outro valor dado a x.

Orações que contêm variáveis são chamadas funções proporcionais ou sentenças abertas. Tais orações não são proposições pois seu valor lógico (V ou F) é discutível, dependem do valor dado às variáveis.

Há, entretanto, duas maneiras de transformar sentenças abertas em proposições:

- 1ª) atribuir valor às variáveis
- 2ª) utilizar quantificadores.

12. O quantificador universal

O quantificador universal, usado para transformar sentenças abertas em proposições, é indicado pelo símbolo ∀, que se lê: "qualquer que seja", "para todo", "para cada".

Exemplos

```
1°.) (\forall x)(x + I = 7), que se lê:
```

"qualquer que seja o número x, temos x + 1 = 7". (Falsa)

2°)
$$(\forall x)(x^3 = 2x^2)$$
, que se lê:

"para todo número x, $x^3 = 2x^2$ ". (Falsa)

3°)
$$(\forall a)$$
 $((a + 1)^2 = a^2 + 2a + 1)$, que se lê:

"qualquer que seja o número a, temos $(a + 1)^2 = a^2 + 2a + 1$ ". (Verdadeira)

4°)
$$(\forall y)(y^2 + 1 > 0)$$
, que se lê:

"para todo número y, temos $y^2 + I$ positivo". (Verdadeira)

13. O quantificador existencial

O quantificador existencial é indicado pelo símbolo ∃, que se lê: "existe", "existe pelo menos um", "existe um".

Exemplos

1°) $(\exists x)(x + 1 = 7)$, que se lê:

"existe um número x tal que x + 1 = 7". (Verdadeira)

2°) $(\exists x)(x^3 = 2x^2)$, que se lê:

"existe um número x tal que $x^3 = 2x^2$ ". (Verdadeira)

3°) $(\exists a)(a^2 + 1 \le 0)$, que se lê:

"existe um número a tal que $a^2 + 1$ é não positivo". (Falsa)

4°.) $(\exists |m|) (m(m + 1) \neq m^2 + m)$, que se lê:

"existe pelo menos um número m tal que $m(m+1) \neq m^2 + m$ ". (Falsa)

14. Algumas vezes utilizamos também outro quantificador: $\exists \mid$, que se lê: "existe um único", "existe um e um só", "existe só um".

Exemplos

1°) $(\exists |x)(x + 1 = 7)$, que se lê:

"existe um só número x tal que x + 1 = 7". (Verdadeira)

2°) $(\exists |x)(x^3 = 2x^2)$, que se lê:

"existe um só número x tal que $x^3 = 2x^2$ ". (Falsa)

3°) $(\exists |x)(x + 2 > 3)$, que se lê:

"existe um só número x tal que x + 2 > 3". (Falsa)

EXERCÍCIO

 Transforme as seguintes sentenças abertas em proposições verdadeiras usando quantificadores:

a)
$$x^2 - 5x + 4 = 0$$

e)
$$-(-x) = x$$

f) $5a + 4 \le 11$

b)
$$(a + 1) (a - 1) = a^2 - 1$$

c)
$$\frac{y}{3} + \frac{y}{4} \neq \frac{y}{7}$$

g)
$$\sqrt{x^2} = x$$

d)
$$\sqrt{m^2} + 9 \neq m + 3$$

$$h) \frac{a^2 - a}{a} = a - 1$$

X. Como negar proposições

Já vimos o que é a negação de uma proposição simples, no item II deste capítulo.

Vamos destacar aqui resultados obtidos no exercício 7, os quais constituem processos para negar proposições compostas e condicionais.

15. Negação de uma conjunção

Tendo em vista que $\circ (p \land q) \Leftrightarrow \circ p \lor \circ q$, podemos estabelecer que a negação de $p \land q$ é a proposição $\circ p \lor \circ q$.

Exemplos

```
1°) p: a ≠ 0

q: b ≠ 0

p ∧ q: a ≠ 0 e b ≠ 0

∼(p ∧ q): a = 0 ou b = 0

2°) p: 2|4

q: 3|9

p ∧ q: 2|4 e 3|9
```

 \cap (p \land q): 2 \(\psi 4 \) ou 3 \(\psi 9 \)

16. Negação de uma disjunção

Tendo em vista que $\cap (p \lor q) \Leftrightarrow (\cap p \land \cap q)$, podemos estabelecer que a negação de $p \lor q$ é a proposição $\cap p \land \cap q$.

```
1°) p: o triângulo ABC é isósceles
q: o triângulo ABC é equilátero
p v q: o triângulo ABC é isósceles ou equilátero
∼(p v q): o triângulo ABC não é isósceles e não é equilátero
```

17. Negação de um condicional simples

Já que $0 (p \to q) \Leftrightarrow p \land 0 q$, podemos estabelecer que a negação de $p \to q$ é a proposição $p \land 0 q$.

Exemplos

1°) p:
$$2 \in \mathbb{Z}$$

q: $2 \in \mathbb{Q}$
p \rightarrow q: $2 \in \mathbb{Z} \rightarrow 2 \in \mathbb{Q}$
 $0 \cdot (p \rightarrow q)$: $2 \in \mathbb{Z} \cdot e^{-2q} \notin \mathbb{Q}$

2.9) p:
$$5^2 = (-5)^2$$

q: $5 = -5$
p \rightarrow q: $5^2 = (-5)^2 \rightarrow 5 = -5$
 $0 \cdot (p \rightarrow q)$: $5^2 = (-5)^2$ e $5 \neq -5$

18. Negação de proposições quantificadas

a) Uma sentença quantificada com o quantificador universal, do tipo $(\forall x) (p(x))$, é negada assim: substitui-se o quantificador pelo existencial e negase p(x), obtendo: $(\exists x) (\neg p(x))$.

Exemplos

1°) sentença:
$$(\forall x) (x + 3 = 5)$$
 negação: $(\exists x) (x + 3 \neq 5)$

2°) sentença:
$$(\forall x) (x(x + 1) = x^2 + x)$$

negação: $(\exists x) (x(x + 1) \neq x^2 + x)$

3°) sentença:
$$(\forall x) (\sqrt{x^2 + 1} = x + 1)$$
 negação: $(\exists x) (\sqrt{x^2 + 1} \neq x + 1)$

- 4º) sentença: Todo losango é um quadrado. negação: Existe um losango que não é quadrado.
- b) Uma sentença quantificada com o quantificador existencial, do tipo $(\exists x) (p(x))$, é negada assim: substitui-se o quantificador pelo universal e negase p(x), obtendo: $(\forall x) (\bigcirc p(x))$.

1°) sentença:
$$(\exists x) (x = x)$$
 negação: $(\forall x) (x \neq x)$

2°) sentença:
$$(\exists a) \left(a + \frac{1}{2} \geqslant \frac{1}{3} \right)$$
 negação: $(\forall a) \left(a + \frac{1}{2} < \frac{1}{3} \right)$

3°) sentença:
$$(\exists a) \left(\frac{1}{a} \in |R|\right)$$
 negação: $(\forall a) \left(\frac{1}{a} \notin |R|\right)$

EXERCÍCIOS

9. Diga qual é a negação de cada proposição abaixo.

a)
$$mdc(2, 3) = 1$$
 ou $mmc(2, 3) \neq 6$

b)
$$\frac{3}{5} = \frac{6}{10}$$
 ou $3 \cdot 10 \neq 6 \cdot 5$

c)
$$\frac{3}{7} \ge 1$$
 e $-3 \ge -7$

d)
$$2^2 = 4 \rightarrow \sqrt{4} = 2$$

e)
$$(-3)^2 = 9 \rightarrow \sqrt{9} \neq -3$$

f)
$$2 \leqslant 5 \rightarrow 3^2 \leqslant 5^2$$

g)
$$(\forall x) (x > 2 \rightarrow 3^x > 3^2)$$

- h) $(\exists x) (\sqrt{x} < 0)$
- i) Todo número inteiro primo é ímpar.
- j) Todo triângulo isósceles é equilátero.
- k) Existe um losango que não é quadrado.
- 1) Existe um número cuja raiz quadrada é zero.
- m) Todo triângulo que tem três ângulos congruentes tem três lados congruentes.
- 10. Classifique em V ou F as negações construídas no exercício anterior.

CAPÍTULO II

Conjuntos

Faremos aqui uma revisão das principais noções da teoria dos conjuntos, naquilo que importa à Matemática Elementar. Em seguida usaremos essas noções para apresentar os principais conjuntos de números.

I. Conjunto - Elemento - Pertinência

- 19. Na teoria dos conjuntos três noções são aceitas sem definição, isto é, são consideradas noções primitivas:
 - a) conjunto
 - b) elemento
 - c) pertinência entre elemento e conjunto

A noção matemática de conjunto é praticamente a mesma que se usa na linguagem comum: é o mesmo que agrupamento, classe, coleção, sistema. Eis alguns exemplos:

- 1) conjunto das vogais
- 2) conjunto dos algarismos romanos
- 3) conjunto dos números ímpares positivos
- 4) conjunto dos planetas do sistema solar
- 5) conjunto dos números primos positivos
- 6) conjunto dos naipes das cartas de um baralho
- 7) conjunto dos nomes dos meses de 31 dias

Cada membro ou objeto que entra na formação do conjunto é chamado *elemento*. Assim, nos exemplos anteriores, temos os elementos:

- 1) a, e, i, o, u
- 2) I, V, X, L, C, D, M
- 3) 1, 3, 5, 7, 9, 11, ...
- 4) Mercúrio, Vênus, Terra, Marte, ...
- 5) 2, 3, 5, 7, 11, 13, ...
- 6) paus, ouros, copas, espadas
- 7) janeiro, março, maio, julho, agosto, outubro, dezembro

No exemplo 3, cada número ímpar é elemento do conjunto dos números ímpares, isto é, pertence ao conjunto. Em particular, 5 pertence ao conjunto dos números ímpares e 2 não pertence.

Um elemento de um conjunto pode ser uma letra, um número, um nome, etc. É importante notar que um conjunto pode ser elemento de outro conjunto. Por exemplo, o conjunto das seleções que disputam um campeonato mundial de futebol é um conjunto formado por equipes que, por sua vez, são conjuntos de jogadores.

Indicamos um conjunto, em geral, com uma letra maiúscula, A, B, C, ..., e um elemento com uma letra minúscula, a, b, c, d, x, y, ...

Sejam A um conjunto e x um elemento. Se x pertence ao conjunto A, escrevemos:

$x \in A$

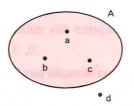
Para indicar que x não é elemento do conjunto A, escrevemos:

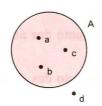
$$x \notin A$$

É habitual representar um conjunto pelos pontos interiores a uma linha fechada e não entrelaçada. Assim, na representação ao lado temos:

$$a \in A, b \in A e d \notin A$$
.

No caso de usarmos um círculo para representar um conjunto, estaremos usando o assim chamado diagrama de Euler-Venn.





II. Descrição de um conjunto

Utilizamos dois recursos principais para descrever um conjunto e seus elementos: enumeramos (citamos, escrevemos) os elementos do conjunto ou damos uma propriedade característica dos elementos do conjunto.

20. Descrição pela citação dos elementos

Quando um conjunto é dado pela enumeração de seus elementos, devemos indicá-lo escrevendo seus elementos entre chaves.

Exemplos

- 1°) conjunto das vogais {a, e, i, o, u}
- 2°) conjunto dos algarismos romanos [I, V, X, L, C, D, M]
- 3°) conjunto dos nomes de meses de 31 dias [janeiro, março, maio, julho, agosto, outubro, dezembro]

Essa notação também é empregada quando o conjunto é infinito: escrevemos alguns elementos que evidenciem a lei de formação e em seguida colocamos reticências.

Exemplos

1°) conjunto dos números ímpares positivos

2°) conjunto dos números primos positivos

3°) conjunto dos múltiplos inteiros de 3

$$\{0, 3, -3, 6, -6, 9, -9, \ldots\}$$

A mesma notação também é empregada quando o conjunto é finito com grande número de elementos: escrevemos os elementos iniciais, colocamos reticências e indicamos o último elemento.

Exemplos

1°) conjunto dos números inteiros de 0 a 500

2°) conjunto dos divisores positivos de 100

21. Descrição por uma propriedade

Quando queremos descrever um conjunto A por meio de uma propriedade característica P de seus elementos x, escrevemos:

$$A = \{x \mid x \text{ tem a propriedade } P\}$$

e lemos: "A é o conjunto dos elementos x tal que x tem a propriedade P".

Exemplos

1º) [x|x é Estado da região Sul do Brasil] é uma maneira de indicar o conjunto:

[Paraná, Santa Catarina, Rio Grande do Sul]

- 2°) $\{x \mid x \text{ \'e divisor inteiro de } 3\}$ é uma maneira de indicar o conjunto: $\{1, -1, 3, -3\}$
- 3°) $\{x | x \text{ \'e inteiro e } 0 \le x \le 500\}$ pode também ser indicado por: $\{0, 1, 2, 3, ..., 500\}$

III. Conjunto unitário — Conjunto vazio

22. Chama-se conjunto unitário aquele que possui um único elemento.

Exemplos

- 1°) conjunto dos divisores de 1, inteiros e positivos: [1]
- 2°) conjunto das soluções da equação 3x + 1 = 10: [3]
- 3°) conjunto dos Estados brasileiros que fazem fronteira com o Uruguai:

 {Rio Grande do Sul}

23. Chama-se *conjunto vazio* aquele que não possui elemento algum. O símbolo usual para o conjunto vazio é \emptyset .

Obtemos um conjunto vazio quando descrevemos um conjunto por meio de uma propriedade P logicamente falsa.

- 1°) $\{x \mid x \neq x\} = \emptyset$
- 2°) $\{x \mid x \in \text{impar e multiplo de } 2\} = \emptyset$
- 3°) $\{x \mid x > 0 \ e \ x < 0\} = \emptyset$

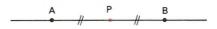
IV. Conjunto universo

24. Quando vamos desenvolver um certo assunto de Matemática, admitimos a existência de um conjunto U ao qual pertencem todos os elementos utilizados no tal assunto. Esse conjunto U recebe o nome de *conjunto universo*.

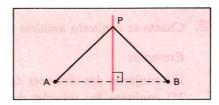
Assim, se procuramos as soluções reais de uma equação, nosso conjunto universo é \mathbb{R} (conjunto dos números reais); se estamos resolvendo um problema cuja solução vai ser um número inteiro, nosso conjunto universo é \mathbb{Z} (conjunto dos números inteiros); se estamos resolvendo um problema de Geometria Plana, nosso conjunto universo é um certo plano α .

Quase sempre a resposta para algumas questões depende do universo U em que estamos trabalhando. Consideremos a questão: "Qual é o conjunto dos pontos P que ficam a igual distância de dois pontos dados A e B, sendo $A \neq B$?"

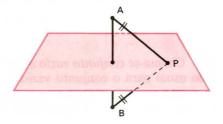
1) Se U é a reta AB, o conjunto procurado é formado só por P;



2) Se *U* é um plano contendo *A* e *B*, o conjunto procurado é a reta mediatriz do segmento *AB*;



3) Se U é o espaço, o conjunto procurado é o plano mediador do segmento AB (plano perpendicular a AB no seu ponto médio).



Portanto, quando vamos descrever um conjunto A através de uma propriedade P, é essencial fixarmos o conjunto universo U em que estamos trabalhando, escrevendo

$$A = \{x \in U \mid x \text{ tem a propriedade } P\}$$

EXERCÍCIOS

- 11. Dê os elementos dos seguintes conjuntos:
 - A = {x | x é letra da palavra matemática}
 - $B = \{x \mid x \in cor da bandeira brasileira\}$
 - $C = \{x \mid x \text{ \'e nome de Estado que começa com } a\}$

Solução

- $A = \{m, a, t, e, i, c\}$
- B = [branco, azul, amarelo, verde]
- C = {Amazonas, Amapá, Acre, Alagoas}
- 12. Descreva por meio de uma propriedade característica dos elementos cada um dos conjuntos seguintes:
 - $A = \{0, 2, 4, 6, 8, ...\}$
 - $B = \{0, 1, 2, ..., 9\}$
 - C = {Brasília, Rio de Janeiro, Salvador}

Solução

- $A = \{x \mid x \text{ \'e inteiro, par e não negativo}\}$
- $B = \{x \mid x \text{ \'e algarismo ar\'abico}\}$
- C = {x | x é nome de cidade que já foi capital do Brasil}
- 13. Escreva com símbolos:
 - a) o conjunto dos múltiplos inteiros de 3, entre -10 e +10;
 - b) o conjunto dos divisores inteiros de 42;
 - c) o conjunto dos múltiplos inteiros de 0;
 - d) o conjunto das frações com numerador e denominador compreendidos entre θ e 3;
 - e) o conjunto dos nomes das capitais da região Centro-Oeste do Brasil.
- 14. Descreva por meio de uma propriedade dos elementos:
 - $A = \{+1, -1, +2, -2, +3, -3, +6, -6\}$
 - $B = \{0, -10, -20, -30, -40, \ldots\}$
 - $C = \{1, 4, 9, 16, 25, 36, ...\}$
 - $D = \{Lua\}$

15. Quais dos conjuntos abaixo são unitários?

$$A = \left\{ x \mid x < \frac{9}{4} e \ x > \frac{6}{5} \right\}$$

$$B = \left\{ x \mid 0 = x = 2 \right\}$$

$$B = \{x \mid 0 \cdot x = 2\}$$

$$C = \{x \mid x \text{ \'e inteiro } e \ x^2 = 3\}$$

$$D = \{x \mid 2x + 1 = 7\}$$

16. Quais dos conjuntos abaixo são vazios?

$$A = \{x \mid 0 \cdot x = 0\}$$

$$B = \left\{ x \mid x > \frac{9}{4} \quad e \quad x < \frac{6}{5} \right\}$$

 $C = \{x \mid x \in \text{divisor de zero}\}\$

 $D = \{x \mid x \text{ \'e divis\'ivel por zero}\}$

V. Conjuntos iguais

25. Dois conjuntos A e B são iguais quando todo elemento de A pertence a B e, reciprocamente, todo elemento de B pertence a A. Em símbolos:

$$A = B \iff (\forall x) (x \in A \iff x \in B)$$

Exemplos

- 1°) $\{a, b, c, d\} = \{d, c, b, a\}$
- 2°) $\{1, 3, 5, 7, 9, ...\} = \{x \mid x \text{ \'e inteiro, positivo e 'impar'}\}$
- 3?) $\{x \mid 2x + 1 = 5\} = \{2\}$

Observemos que na definição de igualdade entre conjuntos não intervém a noção de ordem entre os elementos: portanto:

$${a, b, c, d} = {d, c, b, a} = {b, a, c, d}$$

Observemos ainda que a repetição de um elemento na descrição de um conjunto é algo absolutamente inútil, pois, por exemplo:

$${a, b, c, d} = {a, a, b, b, b, c, d, d, d, d}$$

(para conferir basta usar a definição). Assim, preferimos sempre a notação mais simples.

26. Se A não é igual a B, escrevemos $A \neq B$. É evidente que A é diferente de B se existe um elemento de A não pertencente a B ou existe em B um elemento não pertencente a A.

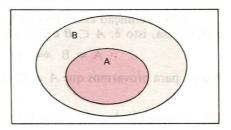
Exemplo

 $\{a, b, d\} \neq \{a, b, c, d\}$

VI. Subconjuntos

27. Um conjunto A é subconjunto de um conjunto B se, e somente se, todo elemento de A pertence também a B.

Com a notação $A \subset B$ indicamos que "A é subconjunto de B" ou "A está contido em B" ou "A é parte de B".



O símbolo ⊂ é denominado sinal de inclusão. Em símbolos, a definição fica assim:

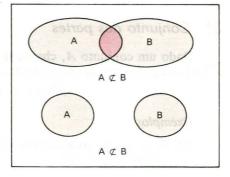
$$A \subset B \iff (\forall x) (x \in A \implies x \in B)$$

Exemplos

- 1°) $\{a, b\} \subset \{a, b, c, d\}$
- 2°) $\{a\} \subset \{a, b\}$
- 3°) $\{a, b\} \subset \{a, b\}$
- 4°) $\{x \mid x \text{ \'e inteiro e par}\} \subset \{x \mid x \text{ \'e inteiro}\}$
- **28.** Quando $A \subset B$, também podemos escrever $B \supset A$, que se lê "B contém A".

Com a notação $A \not\subset B$ indicamos que "A não está contido em B", isto é, a negação de $A \subset B$.

É evidente que $A \not\subset B$ somente se existe ao menos um elemento de A que não pertence a B.



Assim, por exemplo, temos:

- 1°) [a, b, c] ⊄ [b, c, d, e]
- 2°) [a, b] ⊄ [c, d, e]
- 3°) $\{x \mid x \text{ \'e inteiro e par}\} \not\subset \{x \mid x \text{ \'e inteiro e primo}\}$

29. Conjuntos iguais

Vimos anteriormente o conceito de igualdade de conjuntos:

$$A = B \iff (\forall x) (x \in A \iff x \in B).$$

Nessa definição está explícito que todo elemento de A é elemento de B e vice-versa, isto é, $A \subset B$ e $B \subset A$; portanto, podemos escrever:

$$A = B \iff (A \subset B \in B \subset A).$$

Assim, para provarmos que A = B, devemos provar que $A \subset B$ e $B \subset A$.

30. Propriedades da inclusão

Sendo A, B e C três conjuntos arbitrários, valem as seguintes propriedades:

- 1^a) $\emptyset \subset A$
- 2^{a}) A \subset A (reflexiva)
- 3. (A \subset B e B \subset A) \Rightarrow A = B (anti-simétrica)
- 4^{a} .) (A \subset B e B \subset C) \Rightarrow C (transitiva)

A demonstração dessas propriedades é imediata, com exceção da 1^a , que passamos a provar. Para todo x, a implicação

$$x \in \emptyset \Rightarrow x \in A$$

é verdadeira, pois $x \in \emptyset$ é falsa. Então, por definição de subconjunto, $\emptyset \subset A$.

31. Conjunto das partes

Dado um conjunto A, chama-se conjunto das partes de A — notação $\mathcal{P}(A)$ — aquele que é formado por todos os subconjuntos de A. Em símbolos:

$$\mathcal{P}(A) = \{X | X \subset A\}$$

Exemplos

1°) Se $A = \{a\}$, os elementos de $\mathcal{P}(A)$ são \emptyset e $\{a\}$, isto é: $\mathcal{P}(A) = \{\emptyset, \{a\}\}.$

- 2°) Se $A = \{a, b\}$, os elementos de $\mathscr{P}(A)$ são \varnothing , $\{a\}$, $\{b\}$ e $\{a, b\}$, isto é: $\mathscr{P}(A) = \{\varnothing, \{a\}, \{b\}, \{a, b\}\}.$
- 3°.) Se $A = \{a, b, c\}$, os elementos de $\mathcal{L}(A)$ são \emptyset , $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$, $\{b, c\}$ e $\{a, b, c\}$, isto é:

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\}.$$

EXERCÍCIOS

- 17. Dados $A = \{1, 2, 3, 4\}$ e $B = \{2, 4\}$,
 - a) escreva com os símbolos da teoria dos conjuntos as seguintes sentenças:
 - 1ª) 3 é elemento de A

 4^{a}) B é igual a A

2ª) 1 não está em B

5^a) 4 pertence a B

- 3ª) B é parte de A
- b) classifique as sentenças anteriores em falsa ou verdadeira.

Solução

1^a) $3 \in A$ (V)

 4^{a}) B = A (F)

- 2^{a}) $1 \notin B$ (V)
- 5^{a}) $4 \in B$ (V)
- 3^a) B \subset A (V)
- **18.** Sendo $A = \{1, 2\}, B = \{2, 3\}, C = \{1, 3, 4\} \in D = \{1, 2, 3, 4\}$, classifique em V ou F cada sentença abaixo e justifique.
 - a) A C D

c) B ⊂ C

e) C = D

b) A ⊂ B

d) $D \supset B$

f) A ⊄ C

Solução

- a) V, pois $1 \in A$, $1 \in D$, $2 \in A$ e $2 \in D$
- b) F, pois $1 \in A$ e $1 \notin B$
- c) F, pois $2 \in B$ e $2 \notin C$
- d) V, pois $2 \in B$, $2 \in D$, $3 \in B$ e $3 \in D$
- e) F, pois $2 \in D$ e $2 \notin C$
- f) V, pois $2 \in A$ e $2 \notin C$

19. Quais das igualdades abaixo são verdadeiras?

a)
$$\{a, a, a, b, b\} = \{a, b\}$$

b)
$$\{x \mid x^2 = 4\} = \{x \mid x \neq 0 \ e \ x^3 - 4x = 0\}$$

c)
$$\{x \mid 2x + 7 = 11\} = \{2\}$$

d)
$$\{x \mid x < 0 \ e \ x \geqslant 0\} = \emptyset$$

20. Diga se é verdadeira (V) ou falsa (F) cada uma das sentenças abaixo.

- a) $0 \in \{0, 1, 2, 3, 4\}$
- b) $\{a\} \in \{a, b\}$
- c) $\emptyset \in \{0\}$
- d) $0 \in \emptyset$
- e) $\{a\} \subset \emptyset$

- f) $a \in \{a, \{a\}\}$
- g) $[a] \subset [a, [a]]$
- h) $\emptyset \subset [\emptyset, [a]]$
- i) $\emptyset \in [\emptyset, [a]]$
- $[a, b] \in [a, b, c, d]$
- **21.** Faça um diagrama de Venn que simbolize a situação seguinte: A, B, C, D são conjuntos não vazios, $D \subset C \subset B \subset A$.
- **22.** Construa o conjunto das partes do conjunto $A = \{a, b, c, d\}$.

VII. Reunião de conjuntos

32. Dados dois conjuntos A e B, chama-se reunião de A e B o conjunto formado pelos elementos que pertencem a A ou a B.

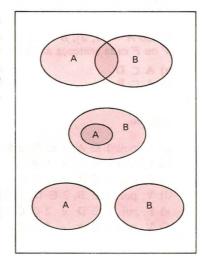
$$A \cup B = \{x \mid x \in A \text{ ou } x \in B\}$$

O conjunto $A \cup B$ (lê-se "A reunião B" ou "A u B") é formado pelos elementos que pertencem a pelo menos um dos conjuntos $A \in B$.

Notemos que x é elemento de $A \cup B$ se ocorrer ao menos uma das condições seguintes:

$$x \in A$$
 ou $x \in B$.

- 1°) $\{a, b\} \cup \{c, d\} = \{a, b, c, d\}$
- 2°) $\{a, b\} \cup \{a, b, c, d\} = \{a, b, c, d\}$
- 3°) $\{a, b, c\} \cup \{c, d, e\} = \{a, b, c, d, e\}$
- 4°) $\{a, b, c\} \cup \emptyset = \{a, b, c\}$
- 5°) ∅ ∪ ∅ = ∅



33. Propriedades da reunião

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1. A \cup A = A (idempotente)
- 2. A $\cup \emptyset = A$ (elemento neutro)
- 3. A \cup B = B \cup A (comutativa)
- 4^{a}) (A U B) U C = A U (B U C) (associativa)

Demonstração

Fazendo A = $\{x \mid x \text{ tem a propriedade } p\}$ ou, simplesmente, A = $\{x \mid p(x)\}$ e, ainda: B = $\{x \mid Q(x)\}$, C = $\{x \mid r(x)\}$ e \emptyset = $\{x \mid f(x)\}$ em que f é proposição logicamente falsa, temos:

$$A \cup A = \{x | p(x) \text{ ou } p(x)\} = \{x | p(x)\} = A.$$

Analogamente, as demais decorrem das propriedades das proposições vistas no exercício 7.

VIII. Interseção de conjuntos

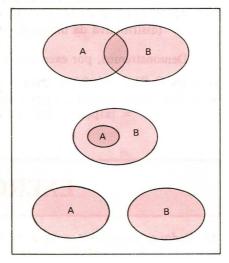
34. Dados dois conjuntos A e B, chama-se *interseção* de A e B o conjunto formado pelos elementos que pertencem a A e a B.

$$A \cap B = \{x | x \in A \quad e \quad x \in B\}$$

O conjunto $A \cap B$ (lê-se "A inter B") é formado pelos elementos que pertencem aos dois conjuntos $(A \in B)$ simultaneamente.

Se $x \in A \cap B$, isso significa que x pertence a A e tamb'em x pertence a B. O conectivo e colocado entre duas condições significa que elas devem ser obedecidas ao mesmo tempo.

- 1°) $\{a, b, c\} \cap \{b, c, d, e\} = \{b, c\}$
- 2°) $\{a, b\} \cap \{a, b, c, d\} = \{a, b\}$
- 3°) $\{a, b, c\} \cap \{a, b, c\} = \{a, b, c\}$
- 4°) $\{a, b\} \cap \{c, d\} = \emptyset$
- 5°) $\{a, b\} \cap \emptyset = \emptyset$



35. Propriedades da interseção

Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades:

- 1. $A \cap A = A$ (idempotente)
- 2^{a}) A \cap U = A (elemento neutro)
- 3^a) $A \cap B = B \cap A$ (comutativa)
- 4^a) $A \cap (B \cap C) = (A \cap B) \cap C$ (associativa)

Como mostramos para a operação de reunião, essas propriedades são também demonstráveis com auxílio do exercício 7.

36. Conjuntos disjuntos

Quando $A \cap B = \emptyset$, isto é, quando os conjuntos A e B não têm elemento comum, A e B são denominados *conjuntos disjuntos*.

IX. Propriedades

- 37. Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades, que inter-relacionam a reunião e a interseção de conjuntos:
 - 1^a) A \cup (A \cap B) = A
 - 2^{a}) $A \cap (A \cup B) = A$
 - 3ª) A \cup (B \cap C) = (A \cup B) \cap (A \cup C) (distributiva da reunião em relação à interseção)
 - 4^{a}) A \cap (B \cup C) = (A \cap B) \cup (A \cap C) (distributiva da interseção em relação à reunião).

Demonstremos, por exemplo, a 1ª e a 3ª:

$$\begin{array}{lll} A \ \cup \ (A \ \cap \ B) \ = \ \{x \mid p(x) \ \lor \ (p(x) \ \land \ q(x))\} \ = \ \{x \mid (p(x))\} \ = \ A \\ A \ \cup \ (B \ \cap \ C) \ = \ \{x \mid p(x) \ \lor \ (q(x) \ \land \ r(x))\} \ = \ \{x \mid (p(x) \ \lor \ q(x)) \ \land \ (p(x) \ \lor \ r(x))\} \ = \\ \ = \ \{x \mid p(x) \ \lor \ q(x)\} \ \cap \ \{x \mid p(x) \ \lor \ r(x)\} \ = \ (A \ \cup \ B) \ \cap \ (A \ \cup \ C) \end{array}$$

EXERCÍCIOS

23. Dados os conjuntos $A = \{a, b, c\}$, $B = \{c, d\}$ e $C = \{c, e\}$, determine $A \cup B$, $A \cup C$, $B \cup C$ e $A \cup B \cup C$.

24. Prove que $A \subset (A \cup B), \forall A$.

Solução

 $x \in A \implies (x \in A \text{ ou } x \in B)$

é uma implicação verdadeira, $\forall x$; portanto: $A \subset (A \cup B)$.

25. Classifique em V ou F:

a) $\emptyset \subset (A \cup B)$

d) $(A \cup B) \subset (A \cup B)$

b) $(A \cup B) \subset A$

e) $B \subset (A \cup B)$

c) $A \supset (A \cup B)$

f) $(A \cup B) \subset (A \cup B \cup C)$

admitindo que A, B e C são conjuntos quaisquer.

- **26.** Determine a reunião dos círculos de raio r, contidos num plano α e que têm um ponto comum $\theta \in \alpha$.
- 27. Determine a reunião das retas de um plano α que são paralelas a uma dada reta r de α .
- **28.** Dados os conjuntos $A = \{a, b, c, d\}$, $B = \{b, c, d, e\}$ e $C = \{c, e, f\}$, descreva $A \cap B$, $A \cap C$, $B \cap C$ e $A \cap B \cap C$.
- **29.** Prove que $(A \cap B) \subset A, \forall A$.

Solução

 $x \in (A \cap B) \implies (x \in A \ e \ x \in B) \implies x \in A$

é uma implicação verdadeira, $\forall x$; portanto: $(A \cap B) \subset A$.

- **30**. Classifique em V ou F:
 - a) $\emptyset \subset (A \cap B)$
 - b) $A \subset (A \cap B)$
 - c) $A \in (A \cap B)$
 - d) $(A \cap B) \subset (A \cap B)$
 - e) $(A \cap B) \subset B$
 - f) $(A \cap B) \supset (A \cap B \cap C)$

admitindo que A, B e C são conjuntos quaisquer.

31. Considere os conjuntos:

K = conjunto dos quadriláteros planos

 $P = \{x \in K | x \text{ tem lados } 2 \text{ a } 2 \text{ paralelos} \}$

 $L = \{x \in K \mid x \text{ tem 4 lados congruentes}\}\$

 $R = \{x \in K \mid x \text{ tem 4 ângulos retos}\}\$

 $Q = \{x \in K \mid x \text{ tem } 4 \text{ lados congruentes e } 2 \text{ ângulos retos} \}$

Determine os conjuntos:

a) $L \cap P$

c) $L \cap R$

e) $L \cap Q$

b) R ∩ P

d) $Q \cap R$

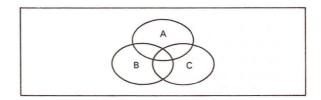
- f) P U Q
- **32.** Dados os conjuntos $A = \{1, 2, 3\}$, $B = \{3, 4\}$ e $C = \{1, 2, 4\}$, determine o conjunto X tal que $X \cup B = A \cup C$ e $X \cap B = \emptyset$.

Solução

- a) $X \cup B = \{1, 2, 3, 4\}$, então os possíveis elementos de X são: 1, 2, 3 e 4.
- b) $X \cap B = \emptyset \Rightarrow 3 \notin X$ e $4 \notin X$ Conclusão $X = \{1, 2\}$.
- 33. Determine o conjunto X tal que:

$$\{a, b, c, d\} \cup X = \{a, b, c, d, e\}, \{c, d\} \cup X = \{a, c, d, e\} e \{b, c, d\} \cap X = \{c\}.$$

- **34.** Sabe-se que A \cup B \cup C = $\{n \in |N| | 1 \leqslant n \leqslant 10\}$, A \cap B = $\{2, 3, 8\}$, A \cap C = $\{2, 7\}$, B \cap C = $\{2, 5, 6\}$ e A \cup B = $\{n \in |N| | 1 \leqslant n \leqslant 8\}$. Determine C.
- 35. Determine o número de conjuntos X que satisfazem a relação $\{1, 2\} \subset X \subset \{1, 2, 3, 4\}.$
- 36. Assinale no diagrama abaixo, um de cada vez, os seguintes conjuntos:
 - a) $A \cap B \cap C$
 - b) A ∩ (B ∪ C)
 - c) A U (B ∩ C)
 - d) A \cup B \cup C



37. Sejam os conjuntos A com 2 elementos, B com 3 elementos, C com 4 elementos. Qual é o número máximo de elementos de $(A \cap B) \cap C$?

X. Diferença de conjuntos

38. Dados dois conjuntos $A \in B$, chama-se diferença entre $A \in B$ o conjunto formado pelos elementos de A que não pertencem a B.

$$A - B = \{x | x \in A \ e \ x \notin B\}$$

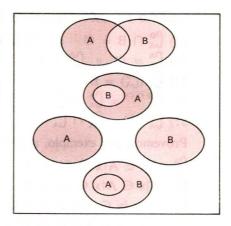
Exemplos

1°)
$$\{a, b, c\} - \{b, c, d, e\} = \{a\}$$

2°)
$$\{a, b, c\} - \{b, c\} = \{a\}$$

3°)
$$\{a, b\} - \{c, d, e, f\} = \{a, b\}$$

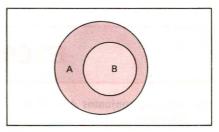
4°)
$$\{a, b\} - \{a, b, c, d, e\} = \emptyset$$



XI. Complementar de B em A

39. Dados dois conjuntos $A \in B$, tais que $B \subset A$, chama-se complementar de B em relação a A o conjunto A - B, isto é, o conjunto dos elementos de A que não pertencem a B.

$$C_A^B$$
 ou \overline{B}



indicamos o complementar de B em relação a A.

Notemos que \mathcal{C}_A^B só é definido para $B \subset A$, e aí temos:

$$C_A^B = A - B$$

Exemplos

1°) Se
$$A = \{a, b, c, d, e\}$$
 e $B = \{c, d, e\}$, então:

$$\int_{A}^{B} = \{a, b\}$$

2°) Se
$$A = \{a, b, c, d\} = B$$
, então:
$$\bigcap_{A}^{B} = \emptyset$$

40. Propriedades da complementação

Sendo B e C subconjuntos de A, valem as seguintes propriedades:

1.
$$C_A^B \cap B = \emptyset$$
 e $C_A^B \cup B = A$

2^a)
$$\int_{A}^{A} = \emptyset$$
 e $\int_{A}^{\emptyset} = A$

$$3^{a}$$
) C_{A} C_{A}^{B} C_{A}^{B}

$$4\stackrel{a}{\cdot}) \ {}^{\binom{B}{A} \cap C)} = \ {}^{\binom{B}{A}} \cup \ {}^{\binom{C}{A}}$$

5^a)
$$C_A^{(B \cup C)} = C_A^B \cap C_A^C$$

Provemos, por exemplo, a 2ª e a 4ª:

$$\int_{A}^{A} = \{x \in A \mid x \notin A\} = \emptyset$$

$$C_A^{\varnothing} = \{x \in A | x \notin \varnothing\} = A$$

$$\begin{array}{l} \mathbb{C}_{A}^{(B\ \cap\ C)} = \{x\in A \mid x\notin B\ \cap\ C\} = \{x\in A \mid x\notin B\ \text{ou}\quad x\notin C\} = \\ = \{x\in A \mid x\notin B\} \ \cup\ \{x\in A \mid x\notin C\} = \mathbb{C}_{A}^{B} \ \cup\ \mathbb{C}_{A}^{C} \end{array}$$

EXERCÍCIOS

38. Sejam os conjuntos $A = \{a, b, c, d\}$, $B = \{c, d, e, f, g\}$ e $C = \{b, d, e, g\}$. Determine:

e)
$$A - (B \cap C)$$

f)
$$(A \cup B) - (A \cap C)$$

39. Prove que $(A - B) \subset A$, $\forall A$.

Solução

A implicação $x \in (A - B) \implies (x \in A \ e \ x \notin B) \implies x \in A$ é verdadeira para todo x, então $(A - B) \subset A$.

40. Classifique em V ou F as sentenças:

a)
$$(A - B) \supset \emptyset$$

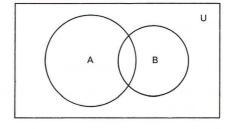
c)
$$(A - B) \subset B$$

b)
$$(A - B) \cup (A \cap B) = A$$

d)
$$(A - B) \subset (A \cup B)$$

admitindo que A e B são conjuntos quaisquer.

- **41.** Dados os conjuntos $A = \{1, 2, 3, 4, 5\}$, $B = \{1, 2, 4, 6, 8\}$ e $C = \{2, 4, 5, 7\}$, obtenha um conjunto X tal que $X \subset A$ e $A X = B \cap C$.
- **42.** Assinale no diagrama ao lado, um de cada vez, os seguintes conjuntos:
 - a) $\overline{A} B$
 - b) $\overline{A} A \cup B$
 - c) $\overline{B} \cup A$
 - d) A U B
 - e) $\overline{A \cap B}$
 - f) $\overline{B} \cap A$



43. Prove que $A - \overline{B} = A \cap B$, em que $A \in B$ são conjuntos quaisquer do universo U.

Solução à complementar de um computer de var de particular à solução de soluç

A implicação

 $x \in (A - \overline{B}) \iff (x \in A \ e \ x \notin \overline{B}) \iff (x \in A \ e \ x \in B) \iff x \in A \cap B \ \text{\'e verdadeira, } \forall x; \text{ portanto, está provado.}$

- **44.** Classifique em V ou F as seguintes sentenças:
 - a) $(A B) \cup (B A) = (A \cup B) (A \cap B)$
 - b) $A \subset B \implies ((B) \subset (A)$
 - c) $(A B) \subset (A)$
 - d) $(A B) \subset (C B)$
- **45**. Sendo $E = \{1, 2, 3, 4, 5, 6, 7, 8\}, p(y) : y + 1 \le 6 eF = \{y \in E | y \text{ satisfaz } p(y)\}, determine F.$
- 46. Descreva os elementos dos conjuntos abaixo:

$$A = \{x \mid x^2 - 5x - 6 = 0\}$$

$$B = \{x \mid x \text{ \'e letra da palavra } exercício\}$$

$$C = \{x \mid x^2 - 9 = 0 \text{ ou } 2x - 1 = 9\}$$

$$D = \{x \mid 2x + 1 = 0 \quad e \quad 2x^2 - x - 1 = 0\}$$

 $E = \{x \mid x \text{ \'e algarismo do número } 234543\}$

- 47. Seja $E = \{a, \{a\}\}$. Diga quais das proposições abaixo são verdadeiras.
 - a) $a \in E$

c) $a \subset E$

e) $\emptyset \in E$

b) $[a] \in E$

d) $\{a\} \subset E$

f) $\emptyset \subset E$

48. Sejam $A \in B$ dois conjuntos finitos. Prove que

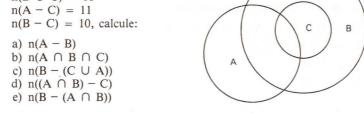
$$n_{A \cup B} = n_A + n_B - n_{A \cap B}.$$

O símbolo n_X representa o número de elementos do conjunto X.

- **49.** Dados A e B conjuntos tais que n(A) = 4, n(B) = 5, e $n(A \cap B) = 3$, determine o número de subconjuntos de $A \cup B$.
- **50.** Sendo A, B e C conjuntos finitos, estabeleça uma fórmula para calcular $n_{A \cup B \cup C}$.
- **51.** Se $A = \{3n \mid n \in \mathbb{N}\}\$ e $B = \{n \in \mathbb{N} \mid n \text{ é divisor de } 120\}\$, qual é o número de elementos de $A \cap B$?
- 52. Em uma escola que tem 415 alunos, 221 estudam inglês, 163 estudam francês e 52 estudam ambas as línguas. Quantos alunos estudam inglês ou francês? Quantos alunos não estudam nenhuma das duas?
- **53.** Denotando-se por X' o complementar de um conjunto qualquer X, determine o conjunto $[P' \cup (P \cap Q)]$, quaisquer que sejam os conjuntos $P \in Q$.
- **54.** Considerando os conjuntos A, B e C, representados ao lado, e sabendo que

$$n(A \cup B) = 24$$

 $n(A \cap B) = 4$
 $n(B \cup C) = 16$
 $n(A - C) = 11$
 $n(B - C) = 10$, calcule:



55. Sabendo que A e B são subconjuntos de U,

 $\overline{A} = \{e, f, g, h, i\}, A \cap B = \{c, d\}, A \cup B = \{a, b, c, d, e, f\}, responda:$ Ouantos elementos tem A? e B?

Obs.: \overline{A} é o complementar de A em U.

56. Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram-se os resultados tabelados abaixo:

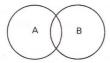
marca	A	В	С	AeB	BeC	CeA	A, B e C	nenhuma das três
número de consumidores	109	203	162	25	41	28	5	3 3 115 8

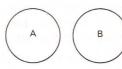
Forneca:

- a) o número de pessoas consultadas;
- b) o número de pessoas que só consomem a marca A;
- c) o número de pessoas que não consomem as marcas A ou C;
- d) o número de pessoas que consomem ao menos duas marcas.
- 57. Determine os conjuntos A, B e C que satisfazem as seguintes seis condições:
 - 1. A \cup B \cup C = {z, x, v, u, t, s, r, q, p}
 - 2^{a}) A \cap B = {r, s}
 - 3. B \cap C = {s, x}
 - 4a) $C \cap A = \{s, t\}$
 - 5^a) A U C = $\{p, q, r, s, t, u, v, x\}$
 - 6a) A U B = $\{p, q, r, s, t, x, z\}$
- 58. Em certa comunidade há indivíduos de três raças: branca, preta e amarela. Sabendo que 70 são brancos, 350 são não pretos e 50% são amarelos, responda:
 - a) quantos indivíduos tem a comunidade?
 - b) quantos são os indivíduos amarelos?
- 59. De todos os empregados de uma firma, 30% optaram por um plano de assistência médica. A firma tem a matriz na capital e somente duas filiais, uma em Santos e outra em Campinas. 45% dos empregados trabalham na matriz e 20% dos empregados trabalham na filial de Santos. Sabendo que 20% dos empregados da capital optaram pelo plano de assistência médica e que 35% dos empregados da filial de Santos o fizeram, qual a porcentagem dos empregados da filial de Campinas que optaram pelo plano?
- **60.** Dados dois conjuntos A e B, chama-se diferença simétrica de A com B o conjunto $A \triangle B$ tal que:

$$A\triangle B = (A - B) \cup (B - A).$$

- a) Determine $\{a, b, c, d\} \triangle \{c, d, e, f, g\}$.
- b) Prove que $A\triangle\emptyset = A$, para todo A.
- c) Prove que $A\triangle A=\emptyset$, para todo A.
- d) Prove que $A \triangle B = B \triangle A$, para $A \in B$ quaisquer.
- e) Assinale em cada diagrama abaixo o conjunto $A\triangle B$.





61. Desenhe um diagrama de Venn representando quatro conjuntos, *A*, *B*, *C* e *D*, não vazios, de modo que se tenha:

$$A \not\subset B$$
, $B \not\subset A$, $C \supset (A \cup B)$ e $D \subset (A \cap B)$.

LEITURA

Cantor e a Teoria dos Conjuntos

Hygino H. Domingues

A natureza do infinito é uma questão antiga e controversa. Arquimedes (287-212 a.C.) fazia distinção entre *infinito potencial* e *infinito atual*. Este último, que vem a ser o infinito como algo completo, era descartado por não haver nenhuma evidência de que alguma coleção de objetos pudesse corresponder a tal idéia. O conjunto IN, por outro lado, é um exemplo de conjunto potencialmente infinito, pois sempre se pode somar uma unidade a cada um de seus elementos obtendo-se outro número natural.

No século XVII Galileu comparou os conjuntos $\mathbb{N}^* = \{1, 2, 3, ...\}$ e $P = \{2, 4, 6, ...\}$. E assinalou que, se a idéia de infinito atual fosse válida, haveria tantos números pares e ímpares reunidos quanto pares apenas, posto que a correspondência $1 \to 2, 2 \to 4, 3 \to 6, ..., n \to 2n, ...$ de \mathbb{N}^* em P é, como se diz hoje, biunívoca. Este aparente paradoxo deve tê-lo levado a deixar de lado tais cogitações.

Aliás, a idéia de infinito atual, por ter conotações de ordem religiosa, não era aceita também por certos teólogos (São Tomás de Aquino, por exemplo) que viam em Deus a única natureza absolutamente infinita. E isso deve ter contribuído para que sua adoção fosse retardada em Matemática.

Curiosamente, quem tirou a Matemática dessa camisa-de-força foi um homem de profunda fé religiosa, Georg Cantor (1845-1918). Cantor nasceu na Rússia, na cidade de São Petersburgo, mas aos 11 anos mudou-se com sua família para a Alemanha, onde se fixou. Em 1862 iniciou o curso de Engenharia em Zurique mas, depois de um semestre, deixou-o para fazer Matemática em Berlim, em cuja universidade obteve o grau de doutor no ano de 1867 com uma tese sobre teoria dos números. Dois anos depois foi admitido na Universidade de Halle, onde transcorreria sua carreira acadêmica.

Dedicando-se entre 1870 e 1872 a pesquisas na área de análise matemática, Cantor acabou tendo sua atenção atraída para um assunto com o qual seu espírito tinha especial afinidade: a natureza dos conjuntos infinitos. E de sua opção por este caminho nasceria a teoria dos conjuntos como capítulo autônomo da Matemática.

Em 1872, o matemático alemão Dedekind dera o primeiro passo nesse sentido com a seguinte definição (aqui em terminologia moderna): "Um conjunto se diz infinito se pode ser colocado em correspondência biunívoca com uma parte própria de si mesmo". Ou seja, aquilo que a Galileu parecera um paradoxo tornava-se a propriedade fundamental dos conjuntos infinitos, com todas as suas implicações.

O grande mérito de Cantor foi perceber, a partir daí, a existência de conjuntos infinitos de espécies diferentes, numa escala de grandeza. Se dois conjuntos, como IN* e P. podém ser colocados em correspondência biunívoca, diz-se que ambos têm mesma potência. E foi através dessas potências que Cantor hierarquizqu o infinito. Na primeira categoria da escala do infinito estão todos os conjuntos com a mesma potência de IN*, entre os quais estão P, Z e, surpreendentemente, o próprio Q. Estes são os conjuntos enumeráveis. A següência a seguir, em que os números são ordenados pela sua altura (= numerador + denominador), dá uma idéia do porquê de Q* ser também enumerável:

Georg Ferdinand Ludwig Philipp Cantor (1845-1918).

1/1, 1/2, 2/1, 1/3, 2/2, 3/1, 1/4, 2/3, 3/2, 4/1, ...

Cantor mostrou que IR e C têm a mesma potência e que esta é superior à dos enumeráveis. E mostrou ainda que a escala do infinito não tem limites: sempre há potências maiores e maiores.

Certos resultados obtidos por Cantor surpreenderam a ele mesmo. Sob esse ponto de vista é possível entender o porquê das duras críticas que recebeu de importantes matemáticos de seu tempo. Mas, para o progresso da Matemática, prevaleceram opiniões como a de Hilbert: "Do paraíso criado por Cantor ninguém nos tirará".

Conjuntos Numéricos

I. Conjunto dos números naturais

41. Chama-se conjunto dos números naturais — símbolo IN — o conjunto formado pelos números 0, 1, 2, 3,

$$|N = \{0, 1, 2, 3, ...\}$$

Neste conjunto são definidas duas operações fundamentais, a adição e a multiplicação, que apresentam as seguintes propriedades:

- [A.1] associativa da adição (a + b) + c = a + (b + c)para todos, a, b, $c \in \mathbb{N}$.
- [A.2] comutativa da adição a + b = b + apara todos $a, b \in \mathbb{N}$.
- [A.3] elemento neutro da adição a + 0 = a para todo $a \in IN$.
- [M.1] associativa da multiplicação (ab)c = a(bc) para todos $a, b, c \in \mathbb{N}$.

- [M.2] comutativa da multiplicação ab = ba para todos $a, b \in \mathbb{N}$.
- [M.3] elemento neutro da multiplicação a $\cdot 1 = a$ para todo $a \in \mathbb{N}$.
 - [D] distributiva da multiplicação relativamente à adição a(b + c) = ab + ac para todos $a, b, c \in \mathbb{N}$.

Veremos que os próximos conjuntos numéricos a serem apresentados são ampliações de IN, isto é, contêm IN, têm uma adição e uma multiplicação com as propriedades formais já apresentadas e outras mais, que constituem justamente o motivo determinante da ampliação.

Assim, dado um natural $a \neq 0$, o simétrico de a não existe em $|\mathbb{N}: -a \notin \mathbb{N}$. O resultado disso é que o símbolo a - b não tem significado em $|\mathbb{N}|$ para todos $a, b \in |\mathbb{N}|$, isto é, em $|\mathbb{N}|$ a subtração não é uma operação. Venceremos essa dificuldade introduzindo um novo conjunto numérico.

EXERCÍCIOS

- 62. Seja H o conjunto $\{n \in \mathbb{N} \mid 2 \le n \le 40, n \text{ múltiplo de } 2, n \text{ não múltiplo de } 3\}$. Qual é o número de elementos de H?
- 63. Um subconjunto X de números naturais contém 12 múltiplos de 4, 7 múltiplos de 6, 5 múltiplos de 12 e 8 números ímpares. Qual é o número de elementos de X?
- 64. Sendo $A = \{n \mid n = 2p 1 \in P \in B\}$, qual é a condição sobre B para que n seja um número natural impar?

II. Conjunto dos números inteiros

42. Chama-se conjunto dos números inteiros — símbolo \mathbb{Z} — o seguinte conjunto:

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

No conjunto Z distinguimos três subconjuntos notáveis:

$$\mathbb{Z}_{+} = \{0, 1, 2, 3, ...\} = IN$$

(chamado conjunto dos inteiros não negativos)

$$\mathbb{Z}_{-} = \{0, -1, -2, -3, ...\}$$

(chamado conjunto dos inteiros não positivos)

$$\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3, ...\}$$

(chamado conjunto dos inteiros não nulos).

43. Operações em Z

No conjunto \mathbb{Z} são definidas também as operações de adição e multiplicação que apresentam, além de [A.1], [A.2], [A.3], [M.1], [M.2], [M.3] e [D], a propriedade:

[A.4] simétrico ou oposto para a adição

Para todo
$$a \in \mathbb{Z}$$
 existe $-a \in \mathbb{Z}$ tal que

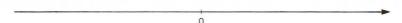
$$a + (-a) = 0.$$

Devido à propriedade [A.4], podemos definir em \mathbb{Z} a operação de subtração, estabelecendo que a-b=a+(-b) para todos $a,b\in\mathbb{Z}$.

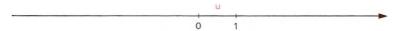
44. Os números inteiros e a reta

Os números inteiros podem ser representados sobre uma reta orientada por meio do seguinte procedimento:

a) sobre a reta estabelecemos um sentido positivo e um ponto O (origem), que representa o inteiro θ (zero):



b) a partir de 0, no sentido positivo, marcamos um segmento unitário $u \neq 0$ cuja extremidade passará a representar o inteiro 1:



c) para cada inteiro positivo n, a partir de 0, marcamos um segmento de medida nu no sentido positivo cuja extremidade representará n e marcamos um segmento de medida nu no sentido negativo cuja extremidade representará o inteiro -n.

O resultado é este:

45. Divisibilidade

Uma importante noção que devemos ter sobre números inteiros é o conceito de divisor.

Dizemos que o inteiro a é divisor do inteiro b — símbolo $a \mid b$ — quando existe um inteiro c tal que ca = b.

$$a \mid b \iff (\exists c \in \mathbb{Z} \mid ca = b)$$

Exemplos

1.9)
$$2 \mid 12$$
 pois $6 \cdot 2 = 12$
2.9) $3 \mid -18$ pois $(-6) \cdot 3 = -18$
3.9) $-5 \mid 20$ pois $(-4) \cdot (-5) = 20$
4.9) $-2 \mid -14$ pois $7 \cdot (-2) = -14$
5.9) $4 \mid 0$ pois $0 \cdot 4 = 0$
6.9) $0 \mid 0$ pois $1 \cdot 0 = 0$

Quando a é divisor de b, dizemos que "b é divisível por a" ou "b é múltiplo de a".

Para um inteiro a qualquer, indicamos com D(a) o conjunto de seus divisores e com M(a) o conjunto de seus múltiplos.

Exemplos

1°) D(2) =
$$\{1, -1, 2, -2\}$$
 M(2) = $\{0, \pm 2, \pm 4, \pm 6, ...\}$
2°) D(-3) = $\{1, -1, 3, -3\}$ M(-3) = $\{0, \pm 3, \pm 6, \pm 9, ...\}$
3°) D(0) = \mathbb{Z} M(0) = $\{0, \pm 3, \pm 6, \pm 9, ...\}$

Dizemos que um número inteiro p é primo quando $p \neq 0$, l e -l e $D(p) = \{l, -l, p, -p\}$.

Exemplos

2, -2, 3, -3, 5, -5, 7 e -7 são primos.

EXERCÍCIOS

- 65. Quais das proposições abaixo são verdadeiras?
 - a) $0 \in \mathbb{N}$

- d) $\mathbb{N} \cup \mathbb{Z}_{-} = \mathbb{Z}$
- g) $(-4) (-5) \in \mathbb{Z}_{+}$

- b) $(2-3) \in \mathbb{N}$
- e) $\mathbb{Z}_+ \cap \mathbb{Z}_- = \emptyset$
- h) $0 \in \mathbb{Z}_{-}$ i) $(5-11) \in \mathbb{Z}$

c) $\mathbb{N} \subset \mathbb{Z}$

- f) $(-3)^2 \in \mathbb{Z}_-$
- **66.** Descreva os seguintes conjuntos: D(6), D(-18), $D(-24) \cap D(16)$, M(4), M(10) e $M(-9) \cap M(6)$.
- 67. Quais dos seguintes elementos de **Z** não são primos: 12, −13, 0, 5, 31, −1, 2, −4, 1, 49 e 53?
- 68. Sendo a e b dois números inteiros, responda:
 - a) D(a) e D(b) podem ser disjuntos?
 - b) Que nome se dá a um inteiro m tal que $D(a) \cap D(b) = D(m)$?
 - c) Quando $D(a) \cap D(b) = \{1, -1\}$, qual é a relação existente entre $a \in b$?
 - d) Em que caso ocorre $M(a) \subset M(b)$?
 - e) Em que caso ocorre $M(a) \cap M(b) = M(ab)$?
 - f) Que nome se dá a um inteiro n tal que $M(a) \cap M(b) = M(n)$?
- 69. Determine os seguintes números inteiros:
 - a) mdc (2, 3)
- c) mdc (-6, -14)
- e) mmc (-4, 6)

- b) mdc (-4, 6)
- d) mmc (2, 3)
- f) mmc (-6, -14)

III. Conjunto dos números racionais

Dado um número inteiro $q \neq 1$ e -1, o inverso de q não existe em \mathbb{Z} : $\frac{1}{q} \notin \mathbb{Z}$. Por isso não podemos definir em \mathbb{Z} a operação de divisão, dando significado ao símbolo $\frac{p}{q}$. Vamos superar essa dificuldade introduzindo os números racionais.

46. Chama-se conjunto dos números racionais — símbolo \mathbb{Q} — o conjunto dos pares ordenados (ou frações) $\frac{a}{b}$, em que $a \in \mathbb{Z}$ e $b \in \mathbb{Z}^*$, para os quais adotam-se as seguintes definições:

1. igualdade:
$$\frac{a}{b} = \frac{c}{d} \iff ad = bc$$

2^a) adição:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

3ª) multiplicação:
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$

No conjunto dos racionais destacamos os subconjuntos:

Q₊ = conjunto dos racionais não negativos

Q_ = conjunto dos racionais não positivos

Q* = conjunto dos racionais não nulos

Na fração $\frac{a}{b}$, a é o numerador e b o denominador. Se a e b são primos entre si, isto é, se mdc(a, b) = 1, dizemos que $\frac{a}{b}$ é uma fração irredutível. Assim, as frações $\frac{2}{3}$, $\frac{3}{7}$ e $\frac{7}{15}$ são irredutíveis, mas $\frac{6}{10}$ não é.

Consideremos o conjunto \mathbb{Q}' formado pelos números racionais com denominador unitário: $\mathbb{Q}' = \left\{ \frac{x}{1} \mid x \in \mathbb{Z} \right\}$. Temos:

$$\frac{a}{1} = \frac{b}{1} \iff a = b$$

$$\frac{a}{1} + \frac{b}{1} = \frac{a+b}{1} \iff a+b = a+b$$

$$\frac{a}{1} \cdot \frac{b}{1} = \frac{a \cdot b}{1} \iff a \cdot b = a \cdot b$$

portanto, os racionais com denominador igual a I comportam-se para a igualdade, a adição e a multiplicação como se fossem números inteiros. Assim, fazendo o racional $\frac{x}{I}$ coincidir com o inteiro x, decorre que:

$$\mathbf{Q}' = \mathbf{Z}, \quad \log_0, \quad \mathbf{Z} \subset \mathbf{Q}.$$

47. Operações em Q

Pode-se verificar que a adição e a multiplicação de racionais apresentam as seguintes propriedades:

[A.1]
$$\left(\frac{a}{b} + \frac{c}{d}\right) + \frac{e}{f} = \frac{a}{b} + \left(\frac{c}{d} + \frac{e}{f}\right)$$

$$[\mathbf{A.2}] \ \frac{\mathbf{a}}{\mathbf{b}} + \frac{\mathbf{c}}{\mathbf{d}} = \frac{\mathbf{c}}{\mathbf{d}} + \frac{\mathbf{a}}{\mathbf{b}}$$

$$[\mathbf{A.3}] \ \frac{\mathbf{a}}{\mathbf{b}} + \mathbf{0} = \frac{\mathbf{a}}{\mathbf{b}}$$

$$[\mathbf{A.4}] \ \frac{\mathbf{a}}{\mathbf{b}} + \left(-\frac{\mathbf{a}}{\mathbf{b}}\right) = 0$$

[M.1]
$$\left(\frac{a}{b} \cdot \frac{c}{d}\right) \cdot \frac{e}{f} = \frac{a}{b} \left(\frac{c}{d} \cdot \frac{e}{f}\right)$$

[M.2]
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{c}{d} \cdot \frac{a}{b}$$

[M.3]
$$\frac{a}{b} \cdot 1 = \frac{a}{b}$$

[D]
$$\frac{a}{b} \cdot \left(\frac{c}{d} + \frac{e}{f}\right) = \frac{a}{b} \cdot \frac{c}{d} + \frac{a}{b} \cdot \frac{e}{f}$$

em que $\frac{a}{b}$, $\frac{c}{d}$ e $\frac{e}{f}$ são racionais quaisquer; portanto, são válidas as mesmas propriedades formais vistas para os números inteiros. Além dessas, temos também a seguinte:

[M.4] simétrico ou inverso para a multiplicação para todo
$$\frac{a}{b} \in \mathbb{Q}$$
 e $\frac{a}{b} \neq 0$, existe $\frac{b}{a} \in \mathbb{Q}$ tal que $\frac{a}{b} \cdot \frac{b}{a} = 1$.

Devido à propriedade [M.4], podemos definir em \mathbb{Q}^* a operação de divisão, estabelecendo que $\frac{a}{b}: \frac{c}{d} = \frac{a}{b} \cdot \frac{d}{c}$ para $\frac{a}{b}$ e $\frac{c}{d}$ racionais quaisquer não nulos.

48. Representação decimal

Notemos que todo número racional $\frac{a}{b}$ pode ser representado por um número decimal. Passa-se um número racional $\frac{a}{b}$ para a forma de número decimal dividindo o inteiro a pelo inteiro b. Na passagem de uma notação para outra podem ocorrer dois casos:

1º) o número decimal tem uma quantidade finita de algarismos, diferentes de zero, isto é, é uma decimal exata.

Exemplos

$$\frac{3}{1} = 3$$
 $\frac{1}{2} = 0.5$ $\frac{1}{20} = 0.05$ $\frac{27}{1000} = 0.027$

2º) o número decimal tem uma quantidade infinita de algarismos que se repetem periodicamente, isto é, é uma dízima periódica.

Exemplos

$$\frac{1}{3} = 0.333... = 0.\overline{3}$$
 (período 3)
 $\frac{2}{7} = 0.285714285714... = 0.285714$ (período 285714)
 $\frac{11}{6} = 1.8333... = 1.8\overline{3}$ (período 3)

Podemos notar também que todo número na forma de decimal exata ou de dízima periódica pode ser convertido à forma de fração $\frac{a}{b}$ e, portanto, representa um número racional.

Quando a decimal é exata, podemos transformá-lo em uma fração cujo numerador é o numeral decimal sem a vírgula e cujo denominador é o algarismo *I* seguido de tantos zeros quantas forem as casas decimais do numeral dado.

Exemplos

$$0,37 = \frac{37}{100}$$
 $2,631 = \frac{2631}{1000}$ $63,4598 = \frac{634598}{10000}$

Quando a decimal é uma dízima periódica, devemos procurar sua geratriz. Damos a seguir três exemplos de como obter a geratriz de uma dízima periódica

Exemplo 1: 0,777...

$$x = 0,777...$$

 $10x = 7,777...$ $\Rightarrow 10x - x = 7 \Rightarrow x = \frac{7}{9}$
então: $0,777... = \frac{7}{9}$.

Exemplo 2: 6,4343...

$$\begin{array}{c} x = 6,434343... \\ 100x = 643,434343... \end{array} \implies 100x - x = 637 \implies x = \frac{637}{99} \\ \text{então:} \quad 6,434343... = \frac{637}{99}. \end{array}$$

Exemplo 3: 2,57919191...

$$\begin{array}{c}
 x = 2,57919191... \\
 100x = 257,919191... \\
 10 000x = 25791,919191...
 \end{array}$$

$$\Rightarrow 10 000x - 100x = 25534 \implies x = \frac{25534}{9900}$$

 $2,57919191... = \frac{25534}{9900}.$ então:

EXERCÍCIOS

70. Quais das seguintes proposições são verdadeiras?

a)
$$\mathbb{N} \subset \mathbb{Q}$$

e)
$$0,474747... \in \mathbb{Q}$$
 i) $\frac{14}{2} \in \mathbb{Q} - \mathbb{Z}$

i)
$$\frac{14}{2} \in \mathbb{Q} - \mathbb{Z}$$

b)
$$\mathbb{Z}\subset\mathbb{Q}$$

f)
$$\left\{\frac{4}{7}, \frac{11}{3}\right\} \subset \mathbb{Q}$$

f)
$$\left\{\frac{4}{7}, \frac{11}{3}\right\} \subset \mathbb{Q}$$
 j) $\frac{21}{14}$ é irredutível

c)
$$0 \in \mathbb{Q}$$

g)
$$1 \in \mathbb{Q} - \mathbb{Z}$$

g)
$$1 \in \mathbb{Q} - \mathbb{Z}$$
 k) $\frac{121}{147} < \frac{131}{150}$

h)
$$\frac{2}{7} \in \mathbb{Q} - \mathbb{Z}$$

$$l) r \in \mathbb{Q} \Rightarrow -r \in \mathbb{Q}$$

- 71. Coloque na forma de uma fração irredutível os seguintes números racionais: 0,4; 0,444...; 0,32; 0,323232...; 54,2; 5,423423423....
- 72. Coloque em ordem crescente os seguintes números racionais: $\frac{15}{16}$, $\frac{11}{12}$, $\frac{18}{10}$, 1, $\frac{47}{49}$ $e^{\frac{2}{3}}$.
- 73. Mostre que, se r_1 e r_2 são racionais e $r_1 < r_2$, então existe um racional r tal que $r_1 < r < r_2$.
- 74. Represente sobre uma reta orientada os seguintes números racionais: -2, $-\frac{3}{2}$, -1, $-\frac{1}{4}$, 0, $\frac{2}{3}$, 1, $\frac{4}{3}$, 2, $\frac{7}{3}$ e $\frac{6}{3}$.
- 75. Calcule o valor de:

a)
$$\frac{0.2 \cdot 0.7 - 4 \cdot 0.01}{0.5 \cdot 0.2}$$

b) 0,999... +
$$\frac{\frac{1}{5} + \frac{1}{3}}{\frac{3}{5} - \frac{1}{15}}$$

- 76. Na minha calculadora, a tecla da divisão não funciona. Nessa situação, para dividir um número por 40, usando a calculadora, eu devo multiplicar 40 por qual número?
- 77. Considere o número $\alpha = 1 + \frac{4}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \frac{1}{10^4} + \dots$ Se ele for racional, coloque-o na forma decimal e na forma de fração irredutível.
- **78.** Suponha que um país *A* tem uma renda *per capita* anual de *20 000* dólares e uma população de *50 milhões* de habitantes. Um outro país *B* tem uma renda *per capita* de *10 000* dólares e uma população de *20 milhões*. Se os dois países se fundirem para formar um novo país, a renda *per capita* resultante estará mais próxima de qual valor?
- 79. A pressão P e o volume V de um gás perfeito mantido a uma temperatura constante satisfazem a Lei de Boyle PV = constante. Se aumentarmos a pressão em 25%, em quantos por cento diminuirá o volume do gás?

IV. Conjunto dos números reais

49. Números irracionais

Existem números cuja representação decimal com infinitas casas decimais não é periódica. Por exemplo, o numeral decimal $0,101001\,0001...$ (em que o número de algarismos 0 intercalados entre os algarismos 1 vai crescendo) é não periódico. Ele representa um número não racional. Ele representa um número irracional.

Outros exemplos de números irracionais:

1,234567891011

6,202002000...

34,56789101112...

50. Chama-se conjunto dos números reais — IR — aquele formado por todos os números com representação decimal, isto é, as decimais exatas ou periódicas (que são números racionais) e as decimais não exatas e não periódicas (chamadas números irracionais).

Dessa forma, todo número racional é número real, ou seja:

 $\mathbf{Q} \subset \mathbf{IR}$.

Além dos racionais, estão em IR números como:

 $\sqrt{2} = 1,4142136...$

 $\pi = 3,1415926...$

a = 1,010010001...

chamados números irracionais.

Se quisermos outros números irracionais, poderemos obtê-los, por exemplo, por meio da expressão \sqrt{p} , em que p é primo e positivo. São irracionais: $\sqrt{3}$, $\sqrt{5}$, $\sqrt{7}$, etc.

Outro recurso para construção de irracionais é usar o fato de que, se α é irracional e r é racional não nulo, então: $\alpha + r$, $\alpha \cdot r$, $\frac{\alpha}{r}$ e $\frac{r}{\alpha}$ são todos irracionais.

Exemplos

$$\sqrt{2} + 1$$
, $3\sqrt{2}$, $\frac{\sqrt{3}}{2}$, $\frac{3}{\sqrt{5}}$ são irracionais.

Além de Q, destacamos em IR três outros subconjuntos:

IR₊ = conjunto dos reais não negativos

IR_ = conjunto dos reais não positivos

IR* = conjunto dos reais não nulos.

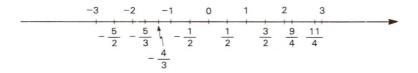
51. Operações em IR

As operações de adição e multiplicação em |R| gozam das mesmas propriedades vistas para o conjunto $\mathbb Q$. Em |R| é também definida a operação de subtração e em |R|* é definida a divisão.

52. Os números reais e a reta

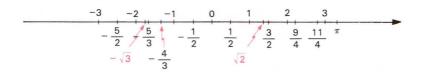
Já vimos que os números inteiros podem ser representados por pontos de uma reta:

Analogamente, os números racionais não inteiros também podem. Se queremos, por exemplo, representar o número $\frac{1}{2}$ sobre a reta, marcamos a partir de θ um segmento de medida $\frac{1}{2}u$ no sentido positivo. A extremidade desse segmento representa $\frac{1}{2}$. Na figura abaixo representamos sobre a reta vários números racionais.



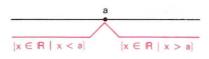
Os números racionais, entretanto, não preenchem completamente a reta, isto é, há pontos da reta que não representam nenhum racional. Por exemplo, entre os pontos 1,41 e 1,42 fica um ponto que representa $\sqrt{2} = 1,414215...$ (irracional).

Quando representamos também sobre a reta os números irracionais, cada ponto da reta passa a representar necessariamente um número racional ou irracional (portanto, real), isto é, os reais preenchem completamente a reta.



Essa reta, que representa IR, é chamada reta real ou reta numérica.

Na reta real os números estão ordenados. Um número a é menor que qualquer número x colocado à sua direita e maior que qualquer número x à sua esquerda.



er a sude EXERCÍCIOS alquis

80. Quais das proposições abaixo são verdadeiras?

a)
$$3 \in \mathbb{R}$$

d)
$$\frac{1}{2} \in \mathbb{R} - \mathbb{Q}$$

g)
$$(\sqrt{2} - 3\sqrt{3}) \in \mathbb{R} - \mathbb{Q}$$

b) IN
$$\subset$$
 IR

e)
$$\sqrt{4} \in \mathbb{R} - \mathbb{Q}$$

$$h) \ \frac{3\sqrt{2}}{\sqrt{5}} \in \mathbb{R} - \mathbb{Q}$$

f)
$$\sqrt[3]{4} \in \mathbb{R} - \mathbb{Q}$$

$$i) \ \frac{3\sqrt{2}}{5\sqrt{2}} \in \mathbb{Q}$$

81. Prove que, se a, b, c, d são racionais, p é primo positivo e $a + b\sqrt{p} = c + d\sqrt{p}$, então a = c e b = d.

Solução

$$a + b\sqrt{p} = c + d\sqrt{p} \iff (b - d)\sqrt{p} = c - a$$

Como c-a é racional, a última igualdade só subsiste quando $(b-d)\sqrt{p} \in \mathbb{Q}$, isto é, se b-d=0. Neste caso, c-a=0, provando a tese.

- **82.** Mostre que $\sqrt{4 + 2\sqrt{3}} = I + \sqrt{3}$.
- 83. Mostre que existem a e b racionais tais que $\sqrt{18 8\sqrt{2}} = a + b\sqrt{2}$.
- 84. Dados dois números x e y reais e positivos, chama-se média aritmética de x com y o real $a = \frac{x + y}{2}$ e chama-se média geométrica o real $g = \sqrt{xy}$. Mostre que $a \ge g$ para todos $x, y \in \mathbb{R}_+$.
- 85. a) Mostre, por meio de um exemplo, que existe um número irracional a tal que a^4 e a^6 são números racionais.
 - b) Mostre que, se a^7 e a^{12} são racionais, então a é racional.
- **86.** Prove que $\sqrt{2} \notin \mathbb{Q}$.

Solução

1. Admitamos que a fração irredutível $\frac{a}{b}$ seja tal que $\sqrt{2} = \frac{a}{b}$;

2.
$$\frac{a}{b} = \sqrt{2} \implies a^2 = 2b^2 \implies a^2$$
 é par $\implies a$ é par;

- 3. fazendo a=2m, com $m \in \mathbb{Z}$, temos: $a^2=2b^2 \implies (2m)^2=2b^2 \implies b^2=2m^2 \implies b^2$ é par $\implies b$ é par e isso é absurdo, pois mdc (a,b)=1.
- 87. Prove que, dado um número racional $\frac{a}{b}$ e um número natural $n \ge 2$, nem sempre $\sqrt[n]{\frac{a}{b}}$ é racional.
- **88.** Dentre os reais -1, 0, 1, 2 e 3, qual não pode ser escrito sob a forma $r = \frac{x+1}{x}$, x real?

V. Intervalos

- 53. Dados dois números reais $a \in b$, com a < b, definimos:
 - a) intervalo aberto de extremos a e b é o conjunto

] a, b [=
$$\{x \in |R \mid a < x < b\}$$

que também pode ser indicado por a - b.

b) intervalo fechado de extremos a e b é o conjunto

$$[a, b] = \{x \in |R| \mid a \leq x \leq b\}$$

que também pode ser indicado por $a \longmapsto b$.

c) intervalo fechado à esquerda (ou aberto à direita) de extremos a e b é o conjunto

$$[a, b] = \{x \in |R| | a \le x < b\}$$

que também pode ser indicado por $a \vdash b$.

d) intervalo fechado à direita (ou aberto à esquerda) de extremos a e b é o conjunto

$$[a, b] = \{x \in |R| \mid a < x \leq b\}$$

que também pode ser indicado por $a \longrightarrow b$.

Os números reais a e b são denominados, respectivamente, extremo inferior e extremo superior do intervalo.

Exemplos

- 1°)]2, $5[= \{x \in |R| | 2 < x < 5\} \text{ \'e intervalo aberto.}$
- 2°) $[-1, 4] = \{x \in |R| | -1 \le x \le 4\}$ é intervalo fechado.

3°)
$$\left[\frac{2}{5}, 7\right] = \left\{x \in |R| \mid \frac{2}{5} \leqslant x < 7\right\}$$
 é intervalo fechado à esquerda.

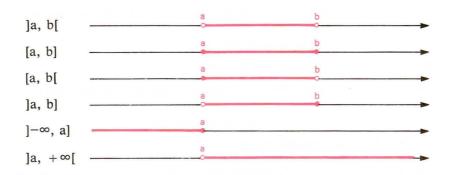
4°)
$$\left] -\frac{1}{3}, \sqrt{2} \right] = \left\{ x \in |R| - \frac{1}{3} < x \leqslant \sqrt{2} \right\}$$
 é intervalo fechado à direita.

Também consideramos intervalos lineares os "intervalos infinitos" assim definidos:

- a) $]-\infty$, $a[= \{x \in |\mathbb{R} \mid x < a\}]$ que também podemos indicar por $-\infty a$.
- b) $]-\infty$, $a] = \{x \in \mathbb{R} \mid x \leq a\}$ que também podemos indicar por $-\infty \longrightarrow a$.
- c)]a, $+\infty$ [= {x \in |R | x > a} que também podemos indicar por $a \longrightarrow +\infty$.
- d) [a, $+\infty$ [= {x \in |R | x \geqslant a} que também podemos indicar por $a \vdash -+\infty$.
- e)]-∞, +∞[= IR que também podemos indicar por -∞ --- +∞.

54. Representação gráfica

Os intervalos têm uma representação geométrica sobre a reta real como segue:



EXERCÍCIOS

89. Represente sobre a reta real cada um dos seguintes conjuntos:

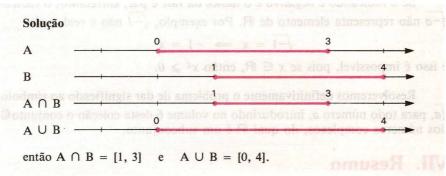
 $A = \{x \in |R \mid 1 \leqslant x \leqslant 2\}$

 $B = \{x \in |R \mid 0 < x < 3\}$

 $C = \{x \in |R \mid x \leq 0 \quad \text{ou} \quad x > 2\}$

 $D = \{x \in |R| \mid -1 < x < 0 \text{ ou } x \ge 3\}$

- 90. Descreva, conforme a notação da teoria dos conjuntos, os seguintes intervalos: $[-1, 3], [0, 2[,]-3, 4[,]-\infty, 5[$ e $[1, +\infty[$.
- **91.** Utilizando a representação gráfica dos intervalos sobre a reta real, determine $A \cap B$ e $A \cup B$, sendo A = [0, 3] e B = [1, 4].



- 92. Descreva os seguintes conjuntos:
 - a) $[0, 2] \cap [1, 3]$
 - b) $[0, 2] \cap]1, 3[$
 - c) $\left]-1, \frac{2}{5}\right[\cap \left]0, \frac{4}{3}\right[$

- d)] $-\infty$, 2] \cap [0, $+\infty$ [
- e) $[-1, +\infty[\cap \left[-\frac{9}{2}, 2\right[$
- f) [1, 2] ∩ [0, 3] ∩ [-1, 4]
- 93. Determine os seguintes conjuntos:
 - a) $[-1, 3] \cup [0, 4]$
 - b)]−2, 1] U]0, 5[

- c) [-1, 3] ∪ [3, 5]
- d) $\left[-\frac{1}{2}, 0 \right[\cup \left[-\frac{3}{2}, -\frac{1}{4} \right] \right]$
- **94.** Sendo $A = [0, 5[e B =]I, 3[, determine <math>\int_A^B$.

- **95.** Sendo $A = \{x \in |\mathbb{R} \mid -1 < x \le 3\}$ e $B = \{x \in |\mathbb{R} \mid 2 < x \le 5\}$, calcule $A \cup B$.
- **96.** Sejam $A = (-\infty; 2]$ e $B = [0; +\infty)$ intervalos de números reais. Determine $A \cap B$.
- 97. Determine a interseção dos conjuntos:

 $\mathbb{R} \cap \mathbb{Q}$; $(\mathbb{N} \cap \mathbb{Z}) \cup \mathbb{Q}$ e $\mathbb{N} \cup (\mathbb{Z} \cap \mathbb{Q})$.

VI. Conjunto dos números complexos

55. Vimos que $\sqrt[n]{a} \in \mathbb{R}_+$ qualquer que seja o real a não negativo. Assim, por exemplo, $\sqrt{2}$, $\sqrt[3]{5}$, $\sqrt[4]{8}$, $\sqrt[5]{\frac{17}{2}}$ e $\sqrt[6]{\pi}$ são números reais.

Desde que o índice da raiz seja ímpar, os radicais da forma $\sqrt[n]{-a}$, em que $a \in \mathbb{R}_+$, também representam números reais. É o caso, por exemplo, de $\sqrt[3]{-1}$, $\sqrt[5]{-32}$ e $\sqrt[7]{-3}$.

Se o radicando é negativo e o índice da raiz é par, entretanto, o radical $\sqrt[n]{-a}$ não representa elemento de |R|. Por exemplo, $\sqrt{-1}$ não é real, pois:

$$\sqrt{-1} = x \implies -1 = x^2$$

e isso é impossível, pois se $x \in \mathbb{R}$, então $x^2 \ge 0$.

Resolveremos definitivamente o problema de dar significado ao símbolo $\sqrt[n]{a}$, para todo número a, introduzindo no volume 6 desta coleção o conjunto $\mathbb C$ dos números complexos, do qual $|\mathbb R|$ é um subconjunto.

VII. Resumo

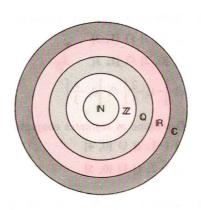
Os conjuntos numéricos podem ser representados esquematicamente pela figura ao lado:

Observemos que

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Notemos também que:

- **Z** − IN = conjunto dos números inteiros negativos
- Q Z = conjunto dos números racionais não inteiros
- |R Q| = conjunto dos números reais irracionais.



Apêndice

Princípio da indução finita

56. Indução vulgar

A indução vulgar (generalização de propriedade após verificação de que a propriedade é válida em alguns casos particulares) pode conduzir a sérios enganos na Matemática. Vejamos dois exemplos:

1°.) Consideremos a relação $y = 2^{2^n} + 1$ definida para $n \in \mathbb{N}$. Temos:

Os números y encontrados são números primos. Fermat (1601-1665) acreditou que a fórmula acima daria números primos, qualquer que fosse o valor inteiro positivo atribuído a n. Esta indução é falsa, pois Euler (1707-1783) mostrou que para n = 5 resulta $y = 2^{2^5} + 1 = 2^{32} + 1 = 4$ 294 967 297 = $= 641 \times 6$ 700 417, isto é, resulta um número divisível por 641 e que, portanto, não é primo.

2°.) Dada a relação $y = -\frac{n^3}{6} + \frac{3n^2}{2} - \frac{7n}{3} + 3$, definida para todo $n \in \mathbb{N}^*$, temos:

$$n = 1 \implies y = -\frac{1^3}{6} + \frac{3 \cdot 1^2}{2} - \frac{7 \cdot 1}{3} + 3 = \frac{-1 + 9 - 14 + 18}{6} = 2$$

$$n = 2 \implies y = -\frac{2^3}{6} + \frac{3 \cdot 2^2}{2} - \frac{7 \cdot 2}{3} + 3 = \frac{-8 + 36 - 28 + 18}{6} = 3$$

$$n = 3 \implies y = -\frac{3^3}{6} + \frac{3 \cdot 3^2}{2} - \frac{7 \cdot 3}{3} + 3 = \frac{-27 + 81 - 42 + 18}{6} = 5$$

$$n = 4 \implies y = -\frac{4^3}{6} + \frac{3 \cdot 4^2}{2} - \frac{7 \cdot 4}{3} + 3 = \frac{-64 + 144 - 56 + 18}{6} = 7$$

Poderíamos tirar a conclusão precipitada: "y é número primo, $\forall n \in \mathbb{N}^*$ ". Essa indução também é falsa, pois:

$$n = 5 \implies y = -\frac{5^3}{6} + \frac{3 \cdot 5^2}{2} - \frac{7 \cdot 5}{3} + 3 = \frac{-125 + 225 - 70 + 18}{6} = 8.$$

57. É necessário, portanto, dispor de um método com base lógica que permita decidir sobre a validade ou não de uma indução vulgar.

Consideremos, por exemplo, a igualdade:

$$1 + 3 + 5 + ... + (2n - 1) = n^2$$
 $(n \in \mathbb{N}^*)$

que expressa a propriedade: "a soma dos n primeiros números ímpares positivos é n^2 ".

Vamos verificar se ela é verdadeira:

$$n = 1 \implies 1 = 1^{2}$$
 (V)
 $n = 2 \implies 1 + 3 = 4 = 2^{2}$ (V)
 $n = 3 \implies 1 + 3 + .5 = 9 = 3^{2}$ (V)
...

 $n = 10 \implies 1 + 3 + .5 + ... + .19 = 100 = 10^{2}$ (V)

Mesmo que continuemos o trabalho fazendo a verificação até $n=1\,000\,000$, não estará provado que a fórmula vale para todo n natural, pois poderá existir um $n>1\,000\,000$ em que a fórmula falha.

58. Princípio da indução finita

Para provarmos que a relação é válida para todo $n \in \mathbb{N}^*$ empregamos o princípio da indução finita (P.I.F.) cujo enunciado é o seguinte:

Uma proposição P(n), aplicável aos números naturais n, é verdadeira para todo $n \in N$, $n \ge n_0$, quando:

- 1.º) $P(n_0)$ é verdadeira, isto é, a propriedade é válida para $n=n_0$, e
- 2°.) Se $k \in \mathbb{N}$, $k \geqslant n_0$ e P(k) é verdadeira, então P(k+1) também é verdadeira.

Provemos, por exemplo, que:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
 $(n \in |N^*)$

1°) Verifiquemos que P(1) é verdadeira:

$$n = 1 \implies 1 = 1^2$$

2°) Admitamos que P(k), com $k \in \mathbb{N}^*$, seja verdadeira:

$$1 + 3 + 5 + \dots + (2k - 1) = k^2$$
 (hipótese da indução)

e provemos que decorre a validade de P(k + 1), isto é:

$$1 + 3 + 5 + \dots + (2k - 1) + [2(k + 1) - 1] = (k + 1)^2$$
.

Temos:

$$1 + 3 + 5 + \dots + (2k-1) + (2k+1) = k^2 + (2k+1) = k^2 + 2k + 1 = (k+1)^2.$$

EXERCÍCIOS

Demonstre usando o princípio da indução finita.

98.
$$1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}, \forall n \in \mathbb{N}^*.$$

99.
$$2 + 5 + 8 + \dots + \dots + (2 + 3n) = \frac{(n+1)(4+3n)}{2}$$
, $\forall n \in \mathbb{N}$.

100.
$$2^0 + 2^1 + 2^2 + ... + 2^{n-1} = 2^n - 1, \forall n \in \mathbb{N}^*$$

101.
$$1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}, \forall n \in \mathbb{N}^*.$$

102.
$$1^3 + 2^3 + 3^3 + \dots + n^3 = \left[\frac{n(n+1)}{2}\right]^2, \forall n \in \mathbb{N}^*.$$

103.
$$8 \mid (3^{2n} - 1), \forall n \in \mathbb{N}^*$$
.

Solução

- 1°) P(1) é verdadeira, pois $8 \mid (3^2 1)$.
- 2°) Admitamos que P(k), $k \in \mathbb{N}^*$, seja verdadeira

$$8 \mid (3^{2k} - 1)$$
 (hipótese da indução) e provemos que $8 \mid (3^{2(k+1)} - 1)$:

$$3^{2(k+1)}-1=3^{2k+2}-1=3^{2k}\cdot 3^2-1=3^{2k}(8+1)-1=8\cdot 3^{2k}+(3^{2k}-1)$$

então:

$$\frac{8 \mid 8 \cdot 3^{2k}}{8 \mid (3^{2k} - 1)} \implies 8 \mid (8 \cdot 3^{2k} + 3^{2k} - 1) \implies 8 \mid (3^{2(k+1)} - 1).$$

CONJUNTOS NUMÉRICOS

104.
$$6 \mid n(n + 1) (n + 2), \forall n \in \mathbb{N}$$
.

105.
$$2 \mid (n^2 + n), \forall n \in \mathbb{N}$$
.

106.
$$3 \mid (n^3 + 2n), \forall n \in \mathbb{N}$$
.

107.
$$(1 + 1) \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{3}\right) \cdot \dots \cdot \left(1 + \frac{1}{n}\right) = n + 1, \forall n \in \mathbb{N}^*.$$

108.
$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}, \forall n \in \mathbb{N}^*.$$

109.
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 + \dots + n(n+1) = \frac{n(n+1)(n+2)}{3}, \forall n \in \mathbb{N}^*.$$

110. $2n \ge n + 1, \forall n \in \mathbb{N}^*$.

Solução

- 1°.) P(1) é verdadeira, pois $2 \cdot 1 \ge 1 + 1$.
- 2°) Admitamos que P(k), $k \in \mathbb{N}^*$, seja verdadeira: $2k \ge k + 1$ (hipótese da indução) e provemos que $2(k + 1) \ge (k + 1) + 1$. Temos:

$$2(k + 1) = 2k + 2 \ge (k + 1) + 2 > (k + 1) + 1$$

- 111. $2^n > n, \forall n \in \mathbb{N}$.
- **112.** $1^3 + 2^3 + 3^3 + \dots + n^3 > \frac{n^4}{4}, \forall n \in \mathbb{N}^*.$
- 113. $(1 + a)^n \ge 1 + na, \forall n \in \mathbb{N}^*, \forall a \in \mathbb{R}, a \ge -1.$
- **114.** O número de diagonais de um polígono convexo de *n* lados é $d_n = \frac{n(n-3)}{2}$.

Solução

1°) P(3) é verdadeira, pois:

$$n = 3 \implies d_3 = \frac{3(3-3)}{2} = 0$$

e isso é verdade porque um triângulo não tem diagonais.

2°) Supondo válida a fórmula para um polígono de k lados ($k \ge 3$):

$$d_k = \frac{k(k-3)}{2}$$
 (hipótese da indução)

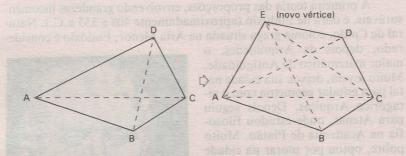
provemos que ela vale para um polígono de k+1 lados:

$$d_{k+1} = \frac{(k+1)[(k+1)-3]}{2} = \frac{(k+1)(k-2)}{2}.$$

Quando passamos de um polígono com k vértices para um de k+1 vértices, acrescentando mais um vértice, ocorre o seguinte:

- todas as diagonais do primeiro polígono continuam sendo diagonais do segundo;
- 2. um lado do primeiro se transforma em diagonal do segundo;
 - 3. no segundo há k-2 novas diagonais (as que partem do novo vértice).

Vejamos, por exemplo, a passagem de um quadrilátero para um pentágono:



$$AC$$
 e BD são diagonais \longrightarrow AC e BD continuam diagonais AD é lado \longrightarrow AD se transforma em diagonal EB e EC são diagonais

Então:

$$d_{k+1} = d_k + 1 + (k-2) = \frac{k(k-3)}{2} + k-1 = \frac{k^2 - 3k + 2k - 2}{2} = \frac{(k+1)(k-2)}{2}.$$

- **115.** A soma das medidas dos ângulos internos de um polígono convexo de n lados é $S_n = (n-2) \cdot 180^{\circ}$.
- 116. Se A é um conjunto finito com n elementos, então $\mathcal{P}(A)$, conjunto das partes de A, tem 2^n elementos.

LEITURA

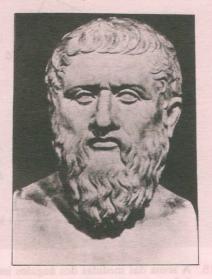
Eudóxio e os Incomensuráveis

Hygino H. Domingues

A descoberta no séc. V a.C. da existência de grandezas incomensuráveis (como a diagonal e o lado de um quadrado) abalou a matemática grega, dado o peso que nela tinha a escola pitagórica. Afinal esta escola apoiava-se na convição de que o universo numérico não ultrapassava o que hoje chamamos de conjunto dos números racionais estritamente positivos. Ademais, o espírito do povo grego era muito diferente do babilônico, por exemplo, que aceitava as aproximações de números irracionais acaso surgidos em algum problema sem questionamentos de ordem teórica. Os pitagóricos, por não encontrarem uma saída matemática satisfatória para o impasse, limitaram-se sempre, no caso de razões, àquelas entre grandezas comensuráveis.

A primeira teoria das proporções, envolvendo grandezas incomensuráveis, é obra de Eudóxio (aproximadamente 408 a 355 a.C.). Natural de Cnido, colônia grega situada na Ásia Menor, Eudóxio é conside-

rado, depois de Arquimedes, o maior matemático da Antiguidade. Muito jovem, deixou sua cidade natal para estudar geometria com o pitagórico Arquitas. Depois seguiu para Atenas, onde estudou filosofia na Academia de Platão. Muito pobre, optou por morar na cidade de Pireu, a duas milhas de Atenas, onde a pensão era mais barata, fazendo a pé, todos os dias, o caminho de ida e volta à Academia. Esteve também meio ano no Egito aprendendo, e depois fundou, em Císico, uma escola que teve muito êxito. Com cerca de 40 anos de idade voltou em visita a Atenas, acompanhado de alguns alunos, sendo recepcionado por Platão com um banquete. Retornou por fim a Cnido para ensinar e participar da vida da cidade, terminando seus dias cercado de prestígio.



Eudóxio foi aluno da Academia, escola de filosofia criada por Platão (foto). À entrada da Academia lia-se a inscrição: "Que aqui não adentrem aqueles que não conhecem geometria".

A solução encontrada por Eudóxio para o problema da incomensurabilidade, embora brilhante, tinha como sério inconveniente o fato de ser meramente geométrica, o que contribuiu fortemente para que nos dois milênios seguintes a geometria se tornasse praticamente a única base de rigor da Matemática.

Eudóxio introduziu a noção de grandeza para representar genericamente coisas como segmentos, ângulos, áreas, volumes e, tempo, por exemplo, e a idéia de múltiplo de uma grandeza segundo um número natural não nulo. Assim, se a, b, c, d são grandezas (a e b da mesma espécie; c e d também da mesma espécie), o conceito de proporção segundo Eudóxio (e que irá figurar nos Elementos de Euclides como definição 5, livro V) é o seguinte:

"a/b = c/d se, e somente se, para quaisquer naturais não nulos $m \in n$: $(ma = nb \Rightarrow mc = nd)$ ou $(ma > nb \Rightarrow mc > nd)$ ou $(ma < nb \Rightarrow mc < nd)$.

Com isso, no fundo, o conjunto dos números racionais maiores que zero fica dividido em duas classes, aquela dos quocientes m/n tais que $ma \le nb$ e a dos quocientes m/n para os quais ma > nb. Escapou aos gregos destacar o ente definido por essas classes, ou seja, o número real α que é a medida de b em relação a a.

Outra criação importante de Eudóxio foi o chamado (atualmente) método de exaustão para determinar áreas e volumes de figuras curvas. Tal método baseia-se, em última instância, num postulado que leva o nome de Arquimedes mas que, segundo este, é devido a Eudóxio: "Dadas duas grandezas não nulas de mesma espécie, sempre há um múltiplo de uma que supera a outra". Com isso Eudóxio pôde provar, por exemplo, que as áreas de dois círculos estão entre si como os quadrados de seus raios e os volumes de duas esferas como os cubos de seus raios.

Resultados como esses, embora notáveis, por não se traduzirem em métodos numéricos, põem em relevo a face negativa da matemática de Eudóxio.

CAPÍTULO IV

Relações

I. Par ordenado

59. Par

Chama-se par todo conjunto formado por dois elementos. Assim $\{1, 2\}$, $\{3, -1\}$, $\{a, b\}$ indicam pares. Lembrando do conceito de igualdade de conjuntos, observamos que inverter a ordem dos elementos não produz um novo par:

$$\{1, 2\} = \{2, 1\}, \{3, -1\} = \{-1, 3\}, \{a, b\} = \{b, a\}.$$

Em Matemática existem situações em que há necessidade de distinguir dois pares pela ordem dos elementos. Por exemplo, no sistema de equações

$$\begin{cases} x + y = 3 \\ x - y = 1 \end{cases}$$

x=2 e y=1 é solução, ao passo que x=1 e y=2 não é solução. Se representássemos por um conjunto, teríamos: $\{2,1\}$ seria solução e $\{1,2\}$ não seria solução. Há uma contradição pois, sendo $\{2,1\}=\{1,2\}$, o mesmo conjunto é e não é solução. Por causa disso dizemos que a solução é o par ordenado (2,1) em que fica subentendido que o primeiro elemento 2 refere-se à incógnita x e o segundo elemento 1 refere-se à incógnita y.

60. Par ordenado

Admitiremos a noção de *par ordenado* como conceito primitivo^(*). Para cada elemento a e cada elemento b, admitiremos a existência de um terceiro elemento (a, b), que denominamos *par ordenado*, de modo que se tenha

$$(a, b) = (c, d) \iff a = c \ e \ b = d$$

II. Representação gráfica

61. Plano cartesiano

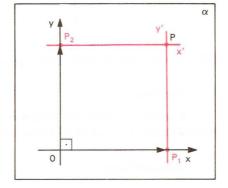
Consideremos dois eixos x e y perpendiculares em θ , os quais determinam o plano α .

Dado um ponto P qualquer, $P \in \alpha$, conduzamos por ele duas retas:

$$x' /\!\!/ x e y' /\!\!/ y$$
.

Denominemos P_1 a interseção de $x \operatorname{com} y' \operatorname{e} P_2$ a interseção de $y \operatorname{com} x'$.

Nessas condições definimos:



- a) abscissa de P é o número real x_P representado por P_1
- b) ordenada de P é o número real y_P representado por P,
- c) coordenadas de P são os números reais x_P e y_P , geralmente indicados na forma de um par ordenado (x_P, y_P) em que x_P é o primeiro termo
 - d) eixo das abscissas é o eixo x (ou Ox)
 - e) eixo das ordenadas é o eixo y (ou Oy)
- f) sistema de eixos cartesiano ortogonal (ou ortonormal ou retangular) é o sistema xOy
 - g) origem do sistema é o ponto O
 - h) plano cartesiano é o plano α

$$(a, b) = \{[a], [a, b]\}$$

mas isso ficaria fora do nível deste curso.

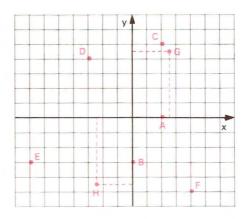
^(*) Poderíamos definir par ordenado como Kuratowski fez:

Exemplo

Vamos localizar os pontos

A(2, 0), B(0, -3), C(2, 5), D(-3, 4)
E(-7, -3), F(4, -5),
$$G\left(\frac{5}{2}, \frac{9}{2}\right)$$
 e
 $H\left(-\frac{5}{2}, -\frac{9}{2}\right)$

no plano cartesiano lembrando que, no par ordenado, o primeiro número representa a abscissa e o segundo a ordenada do ponto.



62. Correspondência entre pontos e pares ordenados

Teorema

Entre o conjunto dos pontos P do plano cartesiano e o conjunto dos pares ordenados (x_P, y_P) de números reais existe uma correspondência biunívoca.

Demonstração

1.ª parte

As definições dadas anteriormente indicam que a todo ponto $P, P \in \alpha$, corresponde um único par de pontos (P_1, P_2) sobre os eixos x e y respectivamente e, portanto, um único par ordenado de números reais (x_P, y_P) tais que x_P e y_P são representados por P_1 e P_2 , respectivamente.

Esquema:
$$P \longrightarrow (P_1, P_2) \longrightarrow (x_p, y_p)$$
.

2ª parte

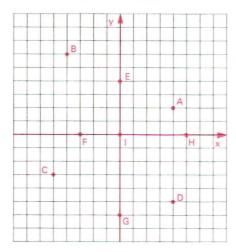
Dado o par ordenado de números reais (x_P, y_P) , existem $P_1 \in x$ e $P_2 \in y$ tais que P_1 representa x_P e P_2 representa y_P , conforme vimos no item 52.

Se construirmos $x' /\!\!/ x$ por P_2 e $y' /\!\!/ y$ por P_I , essas retas vão concorrer em P. Assim, a todo par (x_P, y_P) corresponde um único ponto P, $P \in \alpha$.

Esquema:
$$(x_p, y_p) \longrightarrow (P_1, P_2) \longrightarrow P$$
.

EXERCÍCIOS A M = N = 2 (°)

117. Dê as coordenadas de cada ponto do plano cartesiano abaixo.



118. Assinale no plano cartesiano os pontos: A(2, -3), B(0, -4), C(-4, -5), D(-1, 0), E(0, 5), F(5, 4), G(3, 0), H(-3, 2), I $\left(\frac{1}{2}, \frac{5}{2}\right)$.

III. Produto cartesiano

63. Sejam A e B dois conjuntos não vazios. Denominamos produto cartesiano de A por B o conjunto $A \times B$ cujos elementos são todos pares ordenados (x, y), em que o primeiro elemento pertence a A e o segundo elemento pertence a B.

$$A \times B = \{(x, y) \mid x \in A \ e \ y \in B\}$$

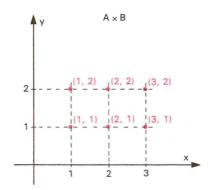
O símbolo $A \times B$ lê-se "A cartesiano B" ou "produto cartesiano de A por B". Se A ou B for o conjunto vazio, definiremos o produto cartesiano de A por B como sendo o conjunto vazio.

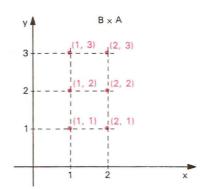
$$A \times \emptyset = \emptyset$$
 $\emptyset \times B = \emptyset$ $\emptyset \times \emptyset = \emptyset$

Exemplos

1°) Se
$$A = \{I, 2, 3\}$$
 e $B = \{I, 2\}$, temos $A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$ e $B \times A = \{(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)\}$

e as representações no plano cartesiano são as seguintes:



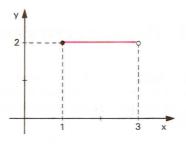


2°.) Se $A = \{2, 3\}$, então o conjunto $A \times A$ (que também pode ser indicado por A^2 e lê-se "A dois") é:

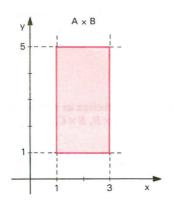
$$A \times A = \{(2, 2), (2, 3), (3, 2), (3, 3)\}.$$

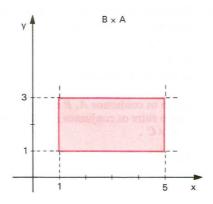
3°.) Se
$$A = \{x \in |\mathbb{R} \mid I \le x < 3\}$$
 e $B = \{2\}$, então temos $A \times B = \{(x, 2) \mid x \in A\}$.

A representação gráfica de $A \times B$ dá como resultado o conjunto de pontos do segmento paralelo ao eixo dos x da figura ao lado.



4°.) Se $A = \{x \in |\mathbb{R} \mid 1 \le x \le 3\}$ e $B = \{x \in |\mathbb{R} \mid 1 \le x \le 5\}$, temos $A \times B = \{(x, y) \in |\mathbb{R}^2 \mid 1 \le x \le 3 \text{ e } 1 \le y \le 5\}$ representado graficamente no plano cartesiano pelo conjunto de pontos de um retângulo. Notemos que $B \times A = \{(x, y) \in |\mathbb{R}^2 \mid 1 \le x \le 5 \text{ e } 1 \le y \le 3\}$ é representado por um retângulo distinto do anterior.





Observações

- 1. Se $A \neq B$, então $A \times B \neq B \times A$, isto é, o produto cartesiano de dois conjuntos não goza da propriedade comutativa.
- 2^a.) Se A e B são conjuntos finitos com m e n elementos respectivamente, então $A \times B$ é um conjunto finito com $m \cdot n$ elementos.
- 3^a.) Se A ou B for infinito e nenhum deles for vazio, então $A \times B$ é um conjunto infinito.

EXERCÍCIOS

119. Dados os conjuntos

$$A = \{1, 3, 4\}$$

$$B = \{-2, 1\}$$

$$C = \{-1, 0, 2\}$$

represente pelos elementos e pelo gráfico cartesiano os seguintes produtos:

a) A×B

c) $A \times C$

e) B²

b) B×A

d) $C \times A$

f) C²

120. Dados os conjuntos

$$A = \{x \in |R| | 1 \leqslant x \leqslant 3\}$$

$$B = \{x \in |R| -2 \leqslant x \leqslant 2\}$$

$$C = \{x \in |R| - 4 < x \le 1\}$$

represente graficamente os seguintes produtos:

a) $A \times B$

c) $B \times C$

e) A²

b) A×C

 $d) C \times B$

f) C²

- **121.** Dados os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{x \in \mathbb{R} \mid 1 \le x \le 4\}$, represente graficamente os conjuntos:
 - a) $A \times B$
 - b) $B \times A$
 - c) $(A \times B) \cup (B \times A)$
- 122. Sejam os conjuntos A, B e C tais que $A \subset B \subset C$. Estabeleça as relações de inclusão entre os conjuntos $A \times A$, $A \times B$, $A \times C$, $B \times A$, $B \times B$, $B \times C$, $C \times A$, $C \times B$ e $C \times C$.
- **123.** Sabendo que $\{(1, 2), (4, 2)\} \subset A^2$ e $n(A^2) = 9$, represente pelos elementos o conjunto A^2 .

Solução

O número de elementos de A^2 é igual ao quadrado do número de elementos de A; portanto:

$$n(A^2) = [n(A)]^2 \implies [n(A)]^2 = 9 \implies n(A) = 3.$$

Se A é um conjunto de 3 elementos, $(1, 2) \in A^2$ e $(4, 2) \in A^2$, concluímos que $A = \{1, 2, 4\}$.

Assim sendo,

$$A \times A = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (2, 4), (4, 1), (4, 2), (4, 4)\}.$$

- **124.** Se $\{(1, -2), (3, 0)\} \subset A^2$ e $n(A^2) = 16$, então represente A^2 pelos seus elementos.
- **125.** Considerando $A \subset B$, $\{(0, 5), (-1, 2), (2, -1)\} \subset A \times B$ e $n(A \times B) = 12$, represente $A \times B$ pelos seus elementos.
- **126.** Sejam $F = \{1, 2, 3, 4\}$ e $G = \{3, 4, 7\}$. Determine o número de elementos de $F \times G$.
- **127.** Dados os conjuntos $A = \left\{ 1, \frac{3}{2} \right\} \cup \left\{ x \in \mathbb{R} \mid 2 < x < 3 \right\}$ e $B = \left\{ x \in \mathbb{R} \mid 1 \leqslant x \leqslant 2 \right\}$, represente graficamente $A \times B$.
- 128. Seja \mathbb{Z} o conjunto dos números inteiros. Sejam ainda os conjuntos $A = \{x \in \mathbb{Z} \mid -1 < x \le 2\}$ e $B = \{3, 4, 5\}$. Qual é o número de elementos do conjunto $D = \{(x, y) \in A \times B \mid y \ge x + 4\}$?

IV. Relação binária

64. Consideremos os conjuntos $A = \{2, 3, 4\}$ e $B = \{2, 3, 4, 5, 6\}$. O produto cartesiano de A por B é o conjunto

$$A \times B = \{(x, y) | x \in A \ e \ y \in B\}$$

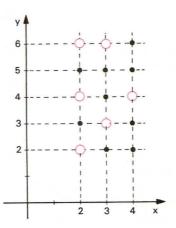
formado por $3 \cdot 5 = 15$ elementos representados na figura ao lado. Se agora considerarmos o conjunto de pares ordenados (x, y) de $A \times B$ tais que $x \mid y$ (lê-se: x é divisor de y), teremos

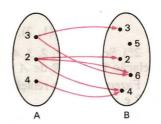
$$R = \{(x, y) \in A \times B \mid x \mid y\} =$$

= \{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}, que \(\'eta\) chamado relaç\(\'eta\) o entre os elementos de \(A\) e de \(B\) ou, mais simplesmente, uma \(rela\)-\(\'eta\) bin\(\'eta\) in \(d\) de \(A\) em \(B\).

O conjunto R está contido em $A \times B$ e é formado por pares (x, y), em que o elemento x de A é "associado" ao elemento y de B mediante um certo critério de "relacionamento" ou "correspondência"

Será bastante útil a representação da relação por meio de flechas, como na figura ao lado.





65. Dados dois conjuntos A e B, chama-se relação binária de A em B todo subconjunto R de $A \times B$.

R é relação binária de A em B
$$\iff$$
 R \subset A \times B.

Se, eventualmente, os conjuntos A e B forem iguais, todo subconjunto de $A \times A$ é chamado relação binária em A.

R é relação binária em
$$A \iff R \subset A \times A$$
.

Utilizaremos as seguintes nomenclaturas já consagradas:

A = conjunto de partida da relação R

B = conjunto de chegada ou contradomínio da relação R.

Quando o par (x, y) pertence à relação R, escrevemos xRy (lê-se: "x erre y").

$$(x, y) \in R \iff x R y$$

e se o par (x, y) não pertence à relação R, escrevemos $x \not R y$ (lê-se: "x não erre y").

$$(x, y) \notin R \iff x R y$$

Exemplos

1°.) Se $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4\}$, quais são os elementos da relação $R = \{(x, y) | x < y\}$ de A em B?

Os elementos de R são todos os pares ordenados de $A \times B$ nos quais o primeiro elemento é menor que o segundo, isto é, são os pares formados pela "associação de cada elemento $x \in A$ com cada elemento de $y \in B$ tal que x < y".

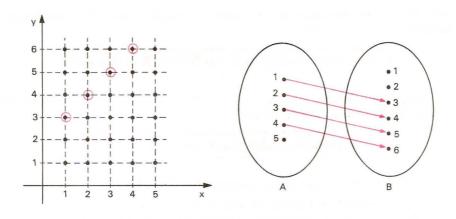
Temos, então:

$$R = \{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}.$$

2°.) Se $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 2, 3, 4, 5, 6\}$, quais são os elementos da relação binária R de A em B assim definida: $rRy \iff y = x + 2$?

Fazem parte da relação todos os pares ordenados (x, y) tais que $x \in A$, $y \in B$ e y = x + 2.

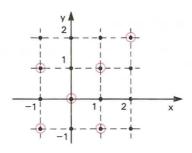
Utilizando as representações gráficas:

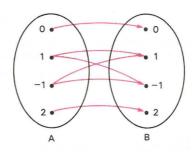


3°.) Se $A = \{-1, 0, 1, 2\}$, quais são os elementos da relação $R = \{(x, y) \in A^2 | x^2 = y^2\}$?

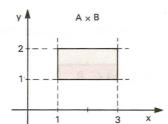
Fazendo a representação gráfica, notamos que:

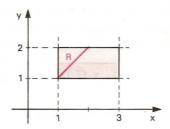
$$R = \{(0, 0), (1, 1), (1, -1), (-1, -1), (-1, 1), (2, 2)\}.$$





4°.) Se $A = \{x \in |\mathbb{R} \mid 1 \le x \le 3\}$ e $B = \{y \in |\mathbb{R} \mid 1 \le y \le 2\}$, pede-se a representação cartesiana de $A \times B$ e $R = \{(x, y) \in A \times B \mid y = x\}$.





EXERCÍCIOS

- 129. I) Enumere pares ordenados
 - II) represente por meio de flechas
 - III) faça o gráfico cartesiano

das relações binárias de $A = \{-2, -1, 0, 1, 2\}$ em $B = \{-3, -2, -1, 1, 2, 3, 4\}$ definidas por:

a) $x R y \iff x + y = 2$

d) $x V y \iff x + y > 2$

b) $x S y \iff x^2 = y$

e) x W y \iff $(x - y)^2 = 1$

c) $x T y \iff |x| = |y|$

130. Dado o conjunto $A = \{1, 2, 3, 4, 5, 6\}$, enumere os pares ordenados e construa o gráfico cartesiano da relação R em A dada por:

$$R = \{(x, y) \in A^2 \mid mdc(x, y) = 2\}.$$

131. Seja o conjunto A = {1, 2, 3, 4, 5, 6}. Construa o gráfico cartesiano da relação R em A definida por:

$$x R y \iff x e y são primos entre si.$$

132. Dado o conjunto $A = \{m \in \mathbb{Z} \mid -7 \le m \le 7\}$, construa o gráfico cartesiano da relação binária R em A definida por:

$$x R y \iff x^2 + y^2 = 25.$$

V. Domínio e imagem

66. Domínio

Seja R uma relação de A em B.

Chama-se dom nio de R o conjunto D de todos os primeiros elementos dos pares ordenados pertencente a R.

$$x \in D \iff y, y \in B | (x, y) \in R$$

Decorre da definição que $D \subset A$.

67. Imagem

Chama-se imagem de R o conjunto Im de todos os segundos elementos dos pares ordenados pertencentes a R.

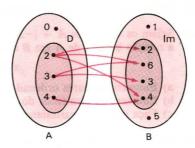
$$y \in Im \iff \exists x, x \in A \mid (x, y) \in R$$

Decorre da definição que $Im \subset B$.

Exemplos

1°.) Se $A = \{0, 2, 3, 4\}$ e $B = \{1, 2, 3, 4, 5, 6\}$, qual é o domínio e a imagem da relação $R = \{(x, y) \in A \times B \mid y \text{ é múltiplo de } x\}$?

Utilizando o esquema das flechas é fácil perceber que D é o conjunto dos elementos de A dos quais partem flechas e que Im é o conjunto dos elementos de B aos quais chegam flechas; portanto:



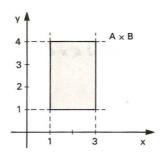
$$R = \{(2, 2), (2, 4), (2, 6), (3, 3), (3, 6), (4, 4)\}$$

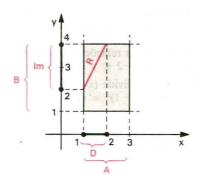
 $D = \{2, 3, 4\}$ $Im = \{2, 3, 4, 6\}$

2°.) Se $A = \{x \in |\mathbb{R} \mid 1 \leqslant x \leqslant 3\}$ e $B = \{y \in |\mathbb{R} \mid 1 \leqslant y \leqslant 4\}$, qual é o domínio e a imagem da relação $R = \{(x, y) \in A \times B \mid y = 2x\}$?

Utilizando a representação cartesiana, temos:

$$D = \{x \in |R| \mid 1 \leqslant x \leqslant 2\} \quad e \quad Im = \{y \in |R| \mid 2 \leqslant y \leqslant 4\}.$$





EXERCÍCIOS

133. Estabeleça o domínio e a imagem das seguintes relações:

a) {(1, 1), (1, 3), (2, 4)}

- d) $\{(1 + \sqrt{2}, \sqrt{2}), (1 \sqrt{3}, 1)\}$
- b) {(-2, 4), (-1, 1), (3, -7), (2, 1)}
- e) $\{(3, \frac{1}{2}), (\frac{5}{2}, -1), (\frac{3}{2}, 0)\}$
- c) $\{(2, 1), (1, -3), (5, \sqrt{2})\}$

- 134. Estabeleça o domínio e a imagem das relações binárias do exercício 129.
- **135.** Sejam os conjuntos $A = \{-2, -1, 0, 1, 2, 3, 4, 5\}, B = \{-2, -1, 0, 1, 2\}$ e R a relação binária de A em B definida por

$$x R y \iff x = y^2$$
.

- a) Enumere os pares ordenados de R.
- b) Enumere os elementos do domínio e da imagem de R.
- c) Faça o gráfico cartesiano de R.
- 136. Qual é o domínio da relação

$$f = \{(x, y) \in |R \times R| y = \frac{2}{4 - x^2}\}$$
?

137. Se R é a relação binária de $A = \{x \in \mathbb{R} \mid I \leqslant x \leqslant 6\}$ em $B = \{y \in \mathbb{R} \mid I \leqslant y \leqslant 4\}$, definida por

$$x R y \iff x = 2y$$

forneça:

- a) a representação cartesiana de $A \times B$;
- b) a representação cartesiana de R;
- c) o domínio e a imagem de R.
- **138.** Se R e S são as relações binárias de $A = \{x \in \mathbb{Z} \mid -2 \le x \le 5\}$ em $B = \{y \in \mathbb{Z} \mid -2 \le y \le 3\}$ definidas por:

$$x R y \Leftrightarrow 2 \text{ divide } (x - y)$$

 $x S y \Leftrightarrow (x - 1)^2 = (y - 2)^2$.

forneca:

- a) as representações cartesianas de R e de S;
- b) o domínio e a imagem de R e de S;
- c) $R \cap S$.

VI. Relação inversa

68. Dada uma relação binária R de A em B, consideremos o conjunto

$$R^{-1} = \{(y, x) \in B \times A \mid (x, y) \in R\}.$$

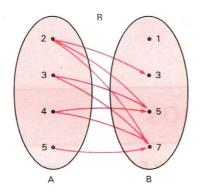
Como R^{-1} é subconjunto de $B \times A$, então R^{-1} é uma relação binária de B em A, à qual daremos o nome de *relação inversa de R*.

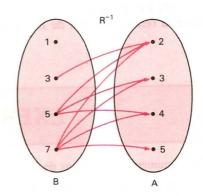
$$(y, x) \in R^{-1} \iff (x, y) \in R$$

Decorre dessa definição que R^{-1} é o conjunto dos pares ordenados obtidos a partir dos pares ordenados de R invertendo-se a ordem dos termos em cada par.

Exemplos

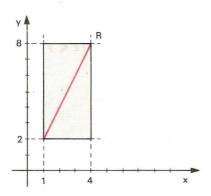
1°.) Se $A = \{2, 3, 4, 5\}$ e $B = \{1, 3, 5, 7\}$, quais são os elementos de $R = \{(x, y) \in A \times B \mid x < y\}$ e de R^{-1} ?
Utilizando o esquema das flechas,

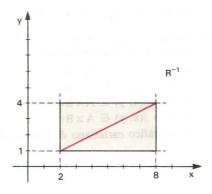




temos: $R = \{(2, 3), (2, 5), (2, 7), (3, 5), (3, 7), (4, 5), (4, 7), (5, 7)\}\$ $e R^{-1} = \{(3, 2), (5, 2), (7, 2), (5, 3), (7, 3), (5, 4), (7, 4), (7, 5)\}.$

2°.) Se $A = \{x \in |\mathbb{R} \mid 1 \le x \le 4\}$ e $B = \{y \in |\mathbb{R} \mid 2 \le y \le 8\}$, representar no plano cartesiano as relações $R = \{(x, y) \in A \times B \mid y = 2x\}$ e sua inversa R^{-1} .





VII. Propriedades das relações

- 69. São evidentes as seguintes propriedades:
 - 1. D(R⁻¹) = Im(R)
- isto é, o domínio de R^{-1} é igual à imagem de R.
 - 2^{a}) Im(R^{-1}) = D(R)

isto é, a imagem de R^{-1} é igual ao domínio de R.

$$3^a$$
) $(R^{-1})^{-1} = R$

isto é, a relação inversa de R^{-1} é a relação R.

EXERCÍCIOS

- 139. Enumere os elementos de R^{-1} , relação inversa de R, nos seguintes casos:
 - a) $R = \{(1, 2), (3, 1), (2, 3)\}$
 - b) $R = \{(1, -1), (2, -1), (3, -1), (-2, 1)\}$
 - c) $R = \{(-3, -2), (1, 3), (-2, -3), (3, 1)\}$
- **140.** Enumere os elementos e esboce os gráficos de R e R^{-1} , relações binárias em $A = \{x \in |\mathbb{N} \mid x \le 10\}$, nos seguintes casos:
 - a) $R = \{(x, y) \in A^2 \mid x + y = 8\}$
 - b) $R = \{(x, y) \in A^2 \mid x + 2y = 10\}$
 - c) $R = \{(x, y) \in A^2 \mid y = (x 3)^2 + 1\}$
 - d) $R = \{(x, y) \in A^2 \mid y = 2^x\}$
- **141.** Dados os conjuntos $A = \{x \in |\mathbb{R} \mid 1 \le x \le 6\}$, $B = \{y \in |\mathbb{R} \mid 2 \le y \le 10\}$ e as seguintes relações binárias:
 - a) $R = \{(x, y) \in A \times B \mid x = y\}$
 - b) $S = \{(x, y) \in A \times B \mid y = 2x\}$
 - c) $T = \{(x, y) \in A \times B | y = x + 2\}$
 - d) $V = \{(x, y) \in A \times B \mid x + y = 7\}$
 - dê o gráfico cartesiano dessas relações e das respectivas relações inversas.

Introdução às Funções

I. Conceito de função

70. Exemplos iniciais

Vamos considerar, por exemplo, os conjuntos

$$A = \{0, 1, 2, 3\}$$
 e $B = \{-1, 0, 1, 2, 3\}$

e as seguintes relações binárias de A em B:

$$R = \{(x, y) \in A \times B \mid y = x + 1\}$$

$$S = \{(x, y) \in A \times B \mid y^2 = x^2\}$$

$$T = \{(x, y) \in A \times B \mid y = x\}$$

$$V = \{(x, y) \in A \times B \mid y = (x - 1)^2 - 1\}$$

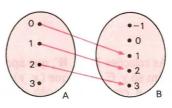
$$W = \{(x, y) \in A \times B \mid y = 2\}$$

Analisando cada uma das relações, temos:

a)
$$R = \{(0, 1), (1, 2), (2, 3)\}$$

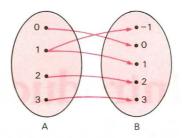
Para cada elemento $x \in A$, com exceção do 3, existe um só elemento $y \in B$ tal que $(x, y) \in R$.

Para o elemento $3 \in A$, não existe $y \in B$ tal que $(3, y) \in R$.



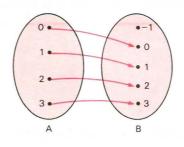
b)
$$S = \{(0, 0), (1, 1), (1, -1), (2, 2), (3, 3)\}$$

Para cada elemento $x \in A$, com exceção do I, existe um só elemento $y \in B$ tal que $(x, y) \in S$. Para o elemento $I \in A$ existem dois elementos de B, o I e o -I, tais que $(I, I) \in S$ e $(I, -I) \in S$.



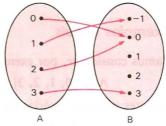
c) $T = \{(0, 0), (1, 1), (2, 2), (3, 3)\}$

Para todo elemento $x \in A$, sem exceção, existe um só elemento $y \in B$ tal que $(x, y) \in T$.



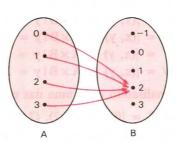
d) $V = \{(0,0), (1,-1), (2,0), (3,3)\}$

Para todo elemento $x \in A$, sem exceção, existe um só elemento $y \in B$ tal que $(x, y) \in V$.



e) $W = \{(0, 2), (1, 2), (2, 2), (3, 2)\}$

Para todo elemento $x \in A$, sem exceção, existe um só elemento $y \in B$ tal que $(x, y) \in W$.



As relações T, V, W, que apresentam a particularidade: "para todo $x \in A$ existe um só $y \in B$ tal que (x, y) pertence à relação", recebem o nome de aplicação de A em B ou função definida em A com imagens em B.

II. Definição de função

71. Dados dois conjuntos $A \in B^{(*)}$, não vazios, uma relação f de A em B recebe o nome de aplicação de A em B ou função definida em A com imagens em B se, e somente se, para todo $x \in A$ existe um só $y \in B$ tal que $(x, y) \in f$.

$$f$$
 é aplicação de A em $B \iff (\forall x \in A, \exists | y \in B | (x, y) \in f)$

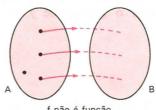
72. Esquema de flechas

Vejamos agora, com o auxílio do esquema das flechas, que condições deve satisfazer uma relação f de A em B para ser aplicação (ou função).

- 1°) É necessário que todo elemento $x \in A$ participe de pelo menos um par $(x, y) \in f$, isto é, todo elemento de A deve servir como ponto de partida de flecha.
- 2°) É necessário que cada elemento $x \in A$ participe de apenas um único par $(x, y) \in f$, isto é, cada elemento de A deve servir como ponto de partida de uma única flecha.

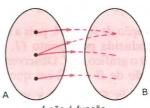
Uma relação f não é aplicação (ou função) se não satisfizer uma das condições acima, isto é:

1°) se existir um elemento de A do qual não parta flecha alguma ou



f não é função

2°) se existir um elemento de A do qual partam duas ou mais flechas.



f não é função.

^(*) Em todo o nosso estudo de funções, fica estabelecido que A e B são conjuntos formados de números reais, isto é, A e B contidos em IR.

73. Gráfico cartesiano

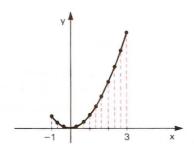
Podemos verificar pela representação cartesiana da relação f de A em B se f é ou não função: basta verificarmos se a reta paralela ao eixo y conduzida pelo ponto (x, 0), em que $x \in A$, encontra sempre o gráfico de f em um só ponto.

Exemplos

1º) A relação f de A em \mathbb{R} , com

$$A = \{x \in |R| -1 \leqslant x \leqslant 3\},\$$

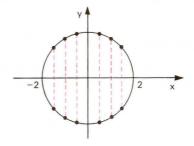
representada ao lado, é função, pois toda reta vertical conduzida pelos pontos de abscissa $x \in A$ encontra sempre o gráfico de f num só ponto.



 2°) A relação f de A em |R|, representada ao lado, em que

$$A = \{x \in |R| -2 \le x \le 2\},\$$

 $n\tilde{a}o$ é $funç\tilde{a}o$, pois há retas verticais que encontram o gráfico de f em dois pontos.

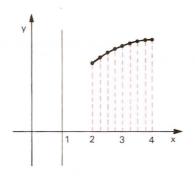


3°.) A relação f de A em |R|, representada ao lado, em que

$$A = \{x \in |R| | 0 \leqslant x \leqslant 4\},\$$

 $n\tilde{a}o$ é função de A em |R|, pois a reta vertical conduzida pelo ponto (1, 0) $n\tilde{a}o$ encontra o gráfico de f. Observemos que f é função de B em |R| em que

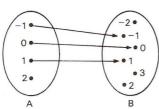
$$B = \{x \in |R| | 2 \leqslant x \leqslant 4\}.$$



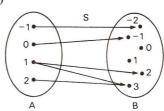
EXERCÍCIOS

142. Estabeleça se cada um dos esquemas das relações abaixo define ou não uma função de $A = \{-1, 0, 1, 2\}$ em $B = \{-2, -1, 0, 1, 2, 3\}$. Justifique.

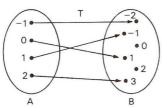
a)



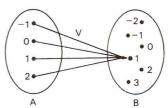
b)



c)

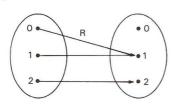


d)

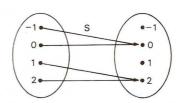


143. Quais dos esquemas abaixo definem uma função de $A = \{0, 1, 2\}$ em $B = \{-1, 0, 1, 2\}$?

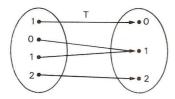
a)



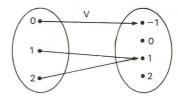
b)



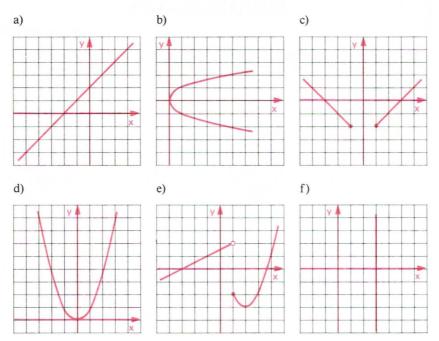
c)



d)



144. Quais das relações de IR em IR, cujos gráficos aparecem abaixo, são funções? Justifique.



III. Notação das funções

74. Toda função é uma relação binária de A em B; portanto, toda função é um conjunto de pares ordenados.

Geralmente, existe uma sentença aberta y = f(x) que expressa a lei mediante a qual, dado $x \in A$, determina-se $y \in B$ tal que $(x, y) \in f$, então $f = \{(x, y) \mid x \in A, y \in B \text{ e } y = f(x)\}.$

Isso significa que, dados os conjuntos A e B, a função f tem a lei de correspondência y = f(x).

Para indicarmos uma função f, definida em A com imagens em B segundo a lei de correspondência y = f(x), usaremos uma das seguintes notações:

f: A
$$\longrightarrow$$
 B ou $A \xrightarrow{f} B$ ou $f: A \to B$ tal que $f: A \to B$ tal que $f: A \to B$ tal que

Exemplos

1°)
$$f: A \longrightarrow B$$
 tal que $y = 2x$

é uma função que associa a cada x de A um y de B tal que y = 2x.

2°)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 tal que $y = x^2$

é uma função que leva a cada x de |R| um y de |R| tal que $y = x^2$.

3°)
$$f: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
 tal que $y = \sqrt{x}$

é uma função que faz corresponder a cada $x \in \mathbb{R}_+$ um $y \in \mathbb{R}$ tal que $y = \sqrt{x}$.

75. Imagem de um elemento

Se $(a, b) \in f$, como já dissemos anteriormente, o elemento b é chamado *imagem* de a pela aplicação f ou valor de f no elemento a, e indicamos:

$$f(a) = b$$

que se lê "f de a é igual a b".

Exemplo

Seja a função

f:
$$|R \rightarrow R$$

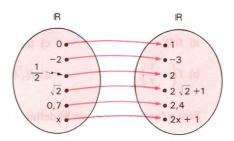
 $x \mapsto 2x + 1$, então:

- a) a imagem de 0 pela aplicação $f \in I$, isto é: $f(0) = 2 \cdot 0 + 1 = 1$
- b) a imagem de -2 pela aplicação f é -3, isto é: $f(-2) = 2 \cdot (-2) + 1 = -3$
- c) analogamente

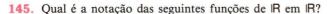
$$f\left(\frac{1}{2}\right) = 2 \cdot \frac{1}{2} + 1 = 2$$

$$f(\sqrt{2}) = 2 \cdot \sqrt{2} + 1$$

$$f(0,7) = 2 \cdot 0,7 + 1 = 2,4$$



EXERCÍCIOS



- a) f associa cada número real ao seu oposto.
- b) g associa cada número real ao seu cubo.
- c) h associa cada número real ao seu quadrado menos 1.
- d) k associa cada número real ao número 2.

146. Qual é a notação das seguintes funções?

- a) f é função de Q em Q que associa cada número racional ao seu oposto adicionado com 1.
- b) g é a função de Z em Q que associa cada número inteiro à potência de base 2 desse número.
- c) h é a função de IR* em IR que associa cada número real ao seu inverso.

147. Seja f a função de \mathbb{Z} em \mathbb{Z} definida por f(x) = 3x - 2. Calcule:

d)
$$f\left(\frac{3}{2}\right)$$

148. Seja f a função de \mathbb{R} em \mathbb{R} definida por $f(x) = x^2 - 3x + 4$. Calcule:

c)
$$f\left(\frac{1}{2}\right)$$

e)
$$f(\sqrt{3})$$

d)
$$f\left(-\frac{1}{3}\right)$$

f)
$$f(1 - \sqrt{2})$$

149. Seja *P* o único número natural que é primo e par. Sendo $f(x) = (0,25)^{-x} + x - 1$, determine o valor de f(P).

150. Seja f a função de IR em IR assim definida

$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ x+1 & \text{se } x \notin \mathbb{Q} \end{cases}$$

Calcule:

a) f(3)

c) $f(\sqrt{2})$

e) $f(\sqrt{3} - 1)$

b) $f\left(-\frac{3}{7}\right)$

d) $f(\sqrt{4})$

f) f(0,75)

151. Seja a função f de \mathbb{R} em \mathbb{R} definida por $f(x) = \frac{2x-3}{5}$. Qual é o elemento do domínio que tem $-\frac{3}{4}$ como imagem?

Solução

Queremos determinar o valor de x tal que $f(x) = -\frac{3}{4}$;

basta, portanto, resolver a equação $\frac{2x-3}{5} = -\frac{3}{4}$.

Resolvendo a equação:

$$\frac{2x-3}{5} = -\frac{3}{4} \iff 4(2x-3) = -3 \cdot 5 \iff 8x-12 = -15 \iff x = -\frac{3}{8}.$$

Resposta: O elemento é $x = -\frac{3}{8}$.

- **152.** Seja a função f de $\mathbb{R} \{I\}$ em \mathbb{R} definida por $f(x) = \frac{3x+2}{x-I}$. Qual é o elemento do domínio que tem imagem 2?
- 153. Quais são os valores do domínio da função real definida por $f(x) = x^2 5x + 9$ que produzem imagem igual a 3?
- **154.** A função f de \mathbb{R} em \mathbb{R} é tal que, para todo $x \in \mathbb{R}$, f(3x) = 3f(x). Se f(9) = 45, calcule f(1).

Solução

Fazendo
$$3x = 9 \implies x = 3$$

 $f(9) = f(3 \cdot 3) = 3 \cdot f(3) = 45 = 3 \cdot 15 \implies f(3) = 15$
Fazendo $3x = 3 \implies x = 1$
 $f(3) = f(3 \cdot 1) = 3 \cdot f(1) = 15 = 3 \cdot 5 \implies f(1) = 5$

$$f(3) = f(3 \cdot 1) = 3 \cdot f(1) = 15 = 3 \cdot 5 \implies f(1) = 5$$

Portanto, $f(1) = 5$.

- **155.** A função $f: \mathbb{R} \to \mathbb{R}$ tem a propriedade: $f(m \cdot x) = m \cdot f(x)$ para $m \in \mathbb{R}$ e $x \in \mathbb{R}$. Calcule f(0).
- 156. É dada uma função real tal que:

1.
$$f(x) \cdot f(y) = f(x + y)$$

2.
$$f(1) = 2$$

3.
$$f(\sqrt{2}) = 4$$

Calcule $f(3 + \sqrt{2})$.

157. Seja f uma função, definida no conjunto dos números naturais, tal que:

$$f(n + 1) = 2f(n) + 3$$

para todo n natural.

- a) Supondo f(0) = 0, calcule f(1), f(2), f(3), f(4), ... e descubra a "fórmula geral" de f(n).
- b) Prove por indução finita a fórmula descoberta.

IV. Domínio e imagem

Considerando que toda função f de A em B é uma relação binária, então f tem um domínio e uma imagem.

76. Domínio

Chamamos de *domínio* o conjunto D dos elementos $x \in A$ para os quais existe $y \in B$ tal que $(x, y) \in f$. Como, pela definição de função, todo elemento de A tem essa propriedade, temos nas funções:

domínio = conjunto de partida

isto é,

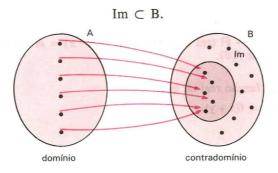
$$D = A$$
.

77. Imagem

Chamamos de *imagem* o conjunto Im dos elementos $y \in B$ para os quais existe $x \in A$ tal que $(x, y) \in f$; portanto:

imagem é subconjunto do contradomínio

isto é,



Notemos, que, feita a representação cartesiana da função f, temos:

Domínio

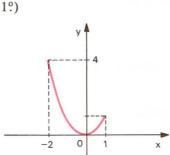
(D) é o conjunto das abscissas dos pontos tais que as retas verticais conduzidas por esses pontos interceptam o gráfico de f, isto é, é o conjunto formado por todas as abscissas dos pontos do gráfico de f.

Imagem

(Im) é o conjunto das ordenadas dos pontos tais que as retas horizontais conduzidas por esses pontos interceptam o gráfico de f, isto é, é o conjunto formado por todas as ordenadas dos pontos do gráfico de f.

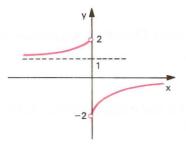
Exemplos

3°)



$$D = \{x \in |R| -2 \le x \le 1\}$$

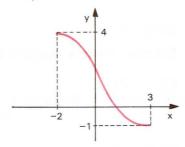
$$Im = \{y \in |R| |0 \le y \le 4\}$$



$$D = \{x \in |R| x \neq 0\}$$

$$Im = \{y \in |R| -2 < y < 0$$
ou 1 < y < 2\}

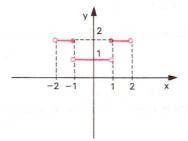
2°)



$$D = \{x \in |R| -2 \le x \le 3\}$$

Im = \{y \in |R| -1 \in y \in 4\}

4°)



$$D = \{x \in |R| -2 < x < 2\}$$

Im = \{1, 2\}

78. Domínio das funções numéricas

As funções que apresentam maior interesse na Matemática são as funções numéricas, isto é, aquelas em que o domínio A e o contradomínio B são subconjuntos de \mathbb{R} . As funções numéricas são também chamadas funções reais de variável real.

Observemos que uma função f fica completamente definida quando são dados o seu domínio D, o seu contradomínio e a lei de correspondência y = f(x).

Quando nos referimos à função f e damos apenas a sentença aberta y = f(x) que a define, subentendemos que D é o conjunto dos números reais x cujas imagens pela aplicação f são números reais, isto é, D é formado por todos os números reais x para os quais é possível calcular f(x).

$$x \in D \iff f(x) \in \mathbb{R}$$
.

Exemplos

Tomemos algumas funções e determinemos o seu domínio.

1°.) y = 2x notando que $2x \in \mathbb{R}$ para todo $x \in \mathbb{R}$, temos:

$$D = IR.$$

2°.) $y = x^2$ notando que $x^2 \in |R|$ para todo $x \in |R|$, temos: D = |R|.

3°)
$$y = \frac{1}{x}$$

notemos que $\frac{I}{x} \in \mathbb{R}$ se, e somente se, x é real e diferente de zero; temos, então:

$$D = |R^*|$$

4°.) y = \sqrt{x} notemos que $\sqrt{x} \in \mathbb{R}$ se, e somente se, x é real e não negativo; então:

$$D = IR_{+}$$
.

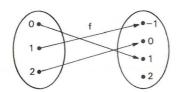
5°) $y = \sqrt[3]{x}$ notando que $\sqrt[3]{x} \in \mathbb{R}$ para todo $x \in \mathbb{R}$, temos:

$$D = IR.$$

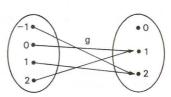
EXERCÍCIOS

158. Estabeleça o domínio e a imagem das funções abaixo:

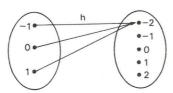
a)



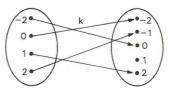
b)



c)

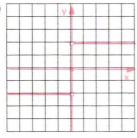


d)



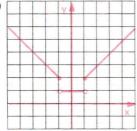
159. Nos gráficos cartesianos das funções abaixo representadas, determine o conjunto imagem.

a)



b)

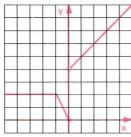
c)



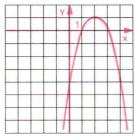
d)

INTRODUÇÃO ÀS FUNÇÕES

e)

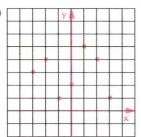


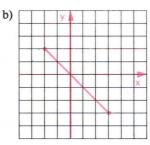
f)



160. Considerando que os gráficos abaixo são gráficos de funções, estabeleça o domínio e a imagem.

a)

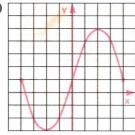




c)

d)

e)



f)



161. Dê o domínio das seguintes funções reais:

a)
$$f(x) = 3x + 2$$

d)
$$p(x) = \sqrt{x-1}$$

g)
$$s(x) = \sqrt[3]{2x - 1}$$

$$b) g(x) = \frac{1}{x+2}$$

$$e) \ q(x) = \frac{1}{\sqrt{x+1}}$$

b)
$$g(x) = \frac{1}{x+2}$$
 e) $q(x) = \frac{1}{\sqrt{x+1}}$ h) $t(x) = \frac{1}{\sqrt[3]{2x+3}}$

c)
$$h(x) = \frac{x-1}{x^2-4}$$

$$f) r(x) = \frac{\sqrt{x+2}}{x-2}$$

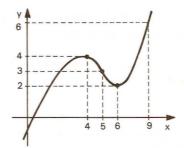
c)
$$h(x) = \frac{x-1}{x^2-4}$$
 f) $r(x) = \frac{\sqrt{x+2}}{x-2}$ i) $u(x) = \frac{\sqrt[3]{x+2}}{x-3}$

162. Sendo $x \ge 4$, determine o conjunto imagem da função $y = \sqrt{x} + \sqrt{x-4}$.

163. Se $f: A \to B$ é uma função e se $D \subset A$, chamamos de imagem de D pela função f ao conjunto anotado e definido por:

$$f < D > = \{y \in B \mid \text{existe } x \in D \text{ tal } \text{que } f(x) = y\}.$$

Se g é a função de IR em IR cujo gráfico está representado ao lado, determine a imagem g < [5; 9] > do intervalo fechado [5: 9].



V. Funções iguais

- 79. Duas funções $f: A \rightarrow B$ e $g: C \rightarrow D$ são iguais se, e somente se, apresentarem:
 - a) domínios iguais (A = C)
 - b) contradomínios iguais (B = D)
 - c) f(x) = g(x) para todo x do domínio.

Isso equivale a dizer que duas funções f e g são iguais se, e somente se, forem conjuntos iguais de pares ordenados.

Exemplos

1°) Se $A = \{1, 2, 3\}$ e $B = \{-2, -1, 0, 1, 2\}$, então as funções de A em B definidas por:

$$f(x) = x - 1$$
 e $g(x) = \frac{x^2 - 1}{x + 1}$

são iguais, pois:

$$x = 1 \implies f(1) = 1 - 1 = 0$$
 e $g(1) = \frac{1 - 1}{1 + 1} = 0$
 $x = 2 \implies f(2) = 2 - 1 = 1$ e $g(2) = \frac{4 - 1}{2 + 1} = 1$
 $x = 3 \implies f(3) = 3 - 1 = 2$ e $g(3) = \frac{9 - 1}{3 + 1} = 2$

ou seja, $f = g = \{(1, 0), (2, 1), (2, 3)\}.$

- 2°.) As funções $f(x) = \sqrt{x^2}$ e g(x) = |x| de |R em |R são iguais, pois $\sqrt{x^2} = |x|$, $\forall x \in |R|$.
- 3°.) As funções $f(x) = x e g(x) = |x| de |R| em |R| não são iguais, pois <math>x \neq |x|$ para x < 0.

EXERCÍCIOS

- **164.** Sejam as funções f, g e h de |R| em |R| definidas por $f(x) = x^3$, $g(y) = y^3$ e $h(z) = z^3$. Quais delas são iguais entre si?
- **165.** As funções: f de |R| em |R| definida por $f(x) = \sqrt{x^2} e g$ de |R| em |R| definida por g(x) = x são iguais? Justifique.
 - 166. As funções f e g cujas leis de correspondência são

$$f(x) = \sqrt{\frac{x-1}{x+1}}$$
 e $g(x) = \frac{\sqrt{x-1}}{\sqrt{x+1}}$ podem ser iguais? Justifique.

167. As funções $f \in g$ de $A = \{x \in |\mathbb{R}| -1 \le x \le 0 \text{ ou } x > 1\}$ em $|\mathbb{R}$, definidas por: $f(x) = \sqrt{\frac{x+1}{x^2-x}} \quad \text{e} \quad g(x) = \frac{\sqrt{x+1}}{\sqrt{x^2-x}} \quad \text{são iguais? Justifique.}$

168. As funções:

LEITURA

Stevin e as Frações Decimais

Hygino H. Domingues

Os números racionais não inteiros surgiram naturalmente na história da Matemática: na divisão de um inteiro por outro, quando o primeiro não é múltiplo do segundo. Os babilônios, por exemplo, uma vez que dividir por a equivale a multiplicar por 1/a, tinham até tabelas de inversos no seu sistema sexagesimal. Essas tabelas mostravam, por exemplo, expressões como "igi 2 gál-bi 30" e "igi 3 gál-bi 20", que significam, respectivamente, 1/2 = 30/60 e 1/3 = 20/60. E sabiam que inversos 1/a, em que $a = 2^{\alpha}3^{\beta}5^{\gamma}$, têm representação sexagesimal finita.

Quanto aos números irracionais, é possível que acreditassem, erradamente, como é bem sabido, que as representações aproximadas que obtinham (para $\sqrt{2}$, por exemplo) pudessem se transformar em exatas se mais casas sexagesimais fossem alcançadas.

O importante porém é que, mediante a notação posicional, os babilônios representavam (aproximadamente ou não) os números reais que lhes surgissem, sem o uso de denominadores. Vestígios disso ainda se encontram nas unidades de medida de ângulo e tempo. Por exemplo $2^{\circ}15'32''$ significa 2 + 15/60 + 32/3600 graus.

Os egípcios, por sua vez, em geral expressavam um quociente não exato entre dois inteiros mediante uma soma de frações unitárias (de numerador I) — o que sempre é possível, embora isso só fosse conhecido por eles empiricamente. Por exemplo, no papiro Rhind, importante documento egípcio de natureza matemática (c. 1800 a.C.), o escriba obteve: 19/8 = 2 + 1/4 + 1/8. Quanto aos números irracionais, quando ocorriam em problemas algébricos, eram expressos aproximadamente através de números inteiros ou frações, sem nenhuma preocupação de ordem teórica.

Os gregos, embora tivessem criado uma matemática incomparavelmente superior à de babilônios e egípcios, sob o aspecto teórico, na questão em pauta acabaram buscando inspiração nos egípcios e babilônios. Assim é que de início usaram frações unitárias e, em séculos posteriores, frações comuns e sexagesimais. Estas, por exemplo, aparecem na obra trigonométrica de Ptolomeu (séc. II d.C.) e eram algo estranho ao sistema de numeração grego como os graus, minutos e segundos o são para o nosso. E até o Renascimento, quando o uso de frações decimais começou a ser insistentemente recomendado, pouco mudara nesse panorama. E o maior responsável pela disseminação de tal uso foi o maior matemático dos Países Baixos na época: Simon Stevin.

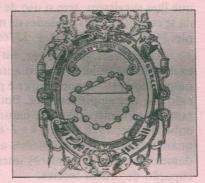
Stevin (1548-1620) ao que parece começou a vida como guardalivros. Mas, por conciliar grande formação teórica nas ciências exatas e um espírito agudamente prático, chamou a atenção do príncipe Maurício de Orange. Esta foi a porta pela qual se tornou engenheiro militar e, posteriormente, comissário de obras de seu país. Seus trabalhos sobre Estática e Hidrostática o notabilizaram entre seus contemporâneos, dada a importância do assunto num país com as características físico-geográficas da Holanda.

Em 1585 publica em Leyden o opúsculo *De thiende* (*O décimo*) com o qual pretendia ensinar a todos "como efetuar, com facilidade nunca vista, todos os cálculos necessários entre os homens por meio de inteiros sem frações". A representação ou forma decimal, provavelmente a principal vantagem da notação posicional, depois de oito séculos de uso dos numerais indo-arábicos, finalmente era apresentada de maneira a poder vingar. A notação de Stevin, contudo, não era feliz: num círculo acima ou à direita de cada dígito escrevia o expoente da potência de dez do denominador subentendido. Por exemplo, o número π podia aparecer como 3 \bigcirc 1 \bigcirc 1 \bigcirc 4 \bigcirc 1 \bigcirc 3 \bigcirc 6 \bigcirc 4 \bigcirc 0 uso

da vírgula ou do ponto como separatriz decimal, sugestão de Napier, acabou prevalecendo com o tempo.

Na mesma obra, Stevin apresentou a idéia de criar um sistema unificado decimal de pesos e medidas para todo o mundo, adiantando-se em alguns séculos à sua adocão.

A invenção das frações decimais constitui uma das grandes etapas do desenvolvimento da matemática numérica. E é assim um dos fatores importantes a colocar Stevin entre os notáveis da Matemática em todos os tempos.



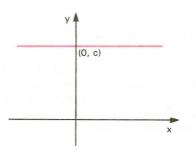
Frontispício dos *Princípios de estática*, de Simon Stevin (1586), mostrando o *clooterans* (colar de esferas) e ostentando a inscrição "O que parece ser uma maravilha não é uma maravilha".

Função Constante Função Afim

I. Função constante

80. Uma aplicação f de |R| em |R| recebe o nome de função constante quando a cada elemento $x \in |R|$ associa sempre o mesmo elemento $c \in |R|$.

$$f(x) = c$$

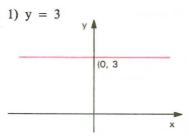


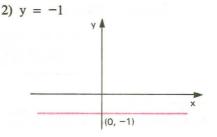
O gráfico da função constante é uma reta paralela ao eixo dos x passando pelo ponto (0, c).

A imagem é o conjunto $Im = \{c\}$.

Exemplos

Construir os gráficos das aplicações de IR em IR definida por:

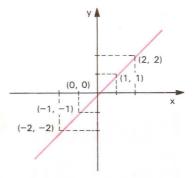




II. Função identidade

81. Uma aplicação f de |R| em |R| recebe o nome de *função identidade* quando a cada elemento $x \in |R|$ associa o próprio x, isto é:

$$f(x) = x$$



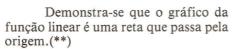
O gráfico da função identidade é uma reta que contém as bissetrizes do 1° e 3° quadrantes.

A imagem é Im = IR.

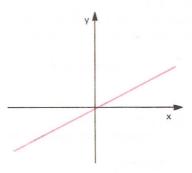
III. Função linear

82. Uma aplicação de |R| em |R| recebe o nome de *função linear* quando a cada elemento $x \in |R|$ associa o elemento $ax \in |R|$ em que $a \neq 0$ é um número real dado, isto é:

$$f(x) = ax \qquad (a \neq 0)$$



A imagem é Im = IR.



De fato, qualquer que seja o $y \in \mathbb{R}$, existe $x = \frac{y}{a} \in \mathbb{R}$, $a \neq 0$, tal que:

$$f(x) = f\left(\frac{y}{a}\right) = a \cdot \frac{y}{a} = y$$

^(*) Observe que, se a = 0, teremos a função constante y = 0.

^(**) Essa demonstração será feita para um caso mais geral e se encontra na página 100.

Exemplos

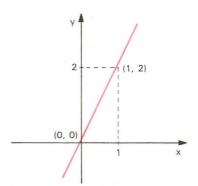
1º) Construir o gráfico da função y = 2x. Considerando que dois pontos distintos determinam uma reta e no caso da função linear um dos pontos é a origem, basta atribuir a x um valor não nulo e calcular o correspondente y = 2x.

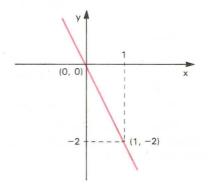
X	y = 2x
1	2

Pelos pontos P(0, 0) e Q(1, 2) traçamos a reta PQ, que é precisamente o gráfico da função dada.

2°) Construir o gráfico da função y = -2x. Analogamente, temos:

x	y = -2x
1	= d -2 °





entitico cartesi SOICIOS is una reta.

169. Construa o gráfico das funções de IR em IR:

$$a) y = 2$$

c)
$$y = -3$$

b)
$$y = \sqrt{2}$$

$$d) y = 0$$

170. Construa, num mesmo sistema cartesiano, os gráficos das funções de IR em IR:

a)
$$y = x$$

b)
$$y = 2x$$

c)
$$y = 3x$$

b)
$$y = 2x$$
 c) $y = 3x$ d) $y = \frac{x}{2}$

171. Construa, num mesmo sistema cartesiano, os gráficos das funções de IR em IR:

a)
$$y = -x$$

b)
$$y = -2x$$

c)
$$y = -3x$$

a)
$$y = -x$$
 b) $y = -2x$ c) $y = -3x$ d) $y = -\frac{x}{2}$

IV. Função afim

83. Uma aplicação de IR em IR recebe o nome de função afim quando a cada $x \in \mathbb{R}$ associa o elemento $(ax + b) \in \mathbb{R}$ em que $a \neq 0$ e b são números reais dados.

$$f(x) = ax + b \qquad (a \neq 0)$$

Exemplos

a)
$$y = 3x + 2$$
 em que $a = 3$ e $b = 2$
b) $y = -2x + 1$ em que $a = -2$ e $b = 1$

ue
$$a = 3$$

$$b = 2$$

b)
$$y = -2x + c$$

c) $y = x - 3$

$$a = -$$

em que
$$a = -2$$
 e $b = 1$
em que $a = 1$ e $b = -3$

d)
$$y = 4x$$

$$a = 4$$

$$e b = 0$$

Notemos que, para b = 0, a função afim y = ax + b se transforma na função linear y = ax; podemos, então, dizer que a função linear é uma particular função afim.

V. Gráfico

84. Teorema

"O gráfico cartesiano da função f(x) = ax + b ($a \ne 0$) é uma reta."

Demonstração

Sejam A, B e C três pontos quaisquer, distintos dois a dois, do gráfico cartesiano da função y = ax + b ($a \ne 0$) e (x_1, y_1) , (x_2, y_2) e (x_3, y_3) , respectivamente, as coordenadas cartesianas desses pontos.

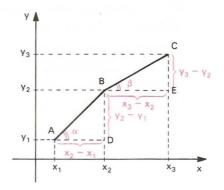
Para provarmos que os pontos A, B e C pertencem à mesma reta, mostremos, inicialmente, que os triângulos retângulos ABD e BCE são semelhantes.

De fato:

$$(x_1, y_1) \in f \Rightarrow y_1 = ax_1 + b$$
 (1)
 $(x_2, y_2) \in f \Rightarrow y_2 = ax_2 + b$ (2)
 $(x_3, y_3) \in f \Rightarrow y_3 = ax_3 + b$ (3)

$$(x_2, y_2) \in f \Rightarrow y_2 = ax_2 + b$$
 (2)

$$(x_3, y_3) \in f \Rightarrow y_3 = ax_3 + b$$
 (3)



Subtraindo membro a membro, temos:

$$\begin{vmatrix} y_3 - y_2 = a(x_3 - x_2) \\ y_2 - y_1 = a(x_2 - x_1) \end{vmatrix} \implies \frac{y_3 - y_2}{x_3 - x_2} = \frac{y_2 - y_1}{x_2 - x_1} = a$$

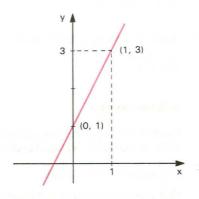
Os triângulos ABD e BCE são retângulos e têm lados proporcionais, então são semelhantes e, portanto, $\alpha = \beta$. Segue-se que os pontos A, B e C estão alinhados.

85. Aplicações

1^a) Construir o gráfico da função y = 2x + 1.

Considerando que o gráfico da função afim é uma reta, vamos atribuir a x dois valores distintos e calcular os correspondentes valores de v.

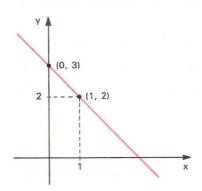
х	y = 2x + 1
0	1
1	3



O gráfico procurado é a reta que passa pelos pontos (0, 1) e (1, 3).

2ª) Construir o gráfico da função y = -x + 3. De modo análogo, temos:

x	y = -x + 3
0	3
1	2



EXERCÍCIOS

172. Construa o gráfico cartesiano das funções de IR em IR:

a)
$$y = 2x - 1$$

e)
$$y = -3x - 4$$

b)
$$y = x + 2$$

f)
$$y = -x + 1$$

c)
$$y = 3x + 2$$

g)
$$y = -2x + 3$$

d)
$$y = \frac{2x - 3}{2}$$

h)
$$y = \frac{4 - 3x}{2}$$

173. Resolva analítica e graficamente o sistema de equações:

$$\begin{cases} x - y = -3 \\ 2x + 3y = 4 \end{cases}$$

Solução analítica

Existem diversos processos analíticos pelos quais podemos resolver um sistema de equações. Vamos apresentar dois deles.

1º processo: Substituição

Este processo consiste em substituir o valor de uma das incógnitas, obtido a partir de uma das equações, na outra.

Resolvendo, por exemplo, a primeira equação na incógnita x, temos:

$$x - y = -3 \iff x = y - 3$$

e substituímos x por esse valor na segunda equação:

$$2(y-3) + 3y = 4 \Leftrightarrow 2y-6 + 3y = 4 \Leftrightarrow y = 2$$

que levamos à primeira equação, encontrando:

$$x-2=-3 \Leftrightarrow x=-1$$
.

A solução do sistema é o par ordenado (-1, 2).

2º processo: Adição

Este processo baseia-se nas seguintes propriedades:

I. "Num sistema de equações, se multiplicamos todos os coeficientes de uma equação por um número não nulo, o sistema que obtemos é equivalente ao anterior (*)".

$$\begin{cases} a_1 x + b_1 y = c_1 \\ a_2 x + b_2 y = c_2 \end{cases} \iff \begin{cases} ka_1 x + kb_1 y = kc_1 & (k \neq 0) \\ a_2 x + b_2 y = c_2 \end{cases}$$

II. "Num sistema de equações, se substituímos uma das equações pela sua soma com uma outra equação do sistema, o novo sistema é equivalente ao anterior".

$$\begin{cases} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{cases} \iff \begin{cases} (a_1 + a_2)x + (b_1 + b_2)y = c_1 + c_2 \\ a_2x + b_2y = c_2 \end{cases}$$

O fundamento do processo da adição consiste no seguinte: aplicando a primeira propriedade, multiplicamos cada equação por números convenientes, de modo que os coeficientes de determinada incógnita sejam opostos e, aplicando a segunda propriedade, substituímos uma das equações pela soma das duas equações.

Assim, no sistema
$$\begin{cases} x - y = -3 \\ 2x + 3y = 4 \end{cases}$$

multiplicamos a primeira equação por 3

$$\begin{cases} 3x - 3y = -9 \\ 2x + 3y = 4 \end{cases}$$

Substituindo a primeira equação pela soma das duas equações, temos:

$$\begin{cases} 5x = -5 \\ 2x + 3y = 4 \end{cases}$$

^(*) Sistemas de equações são equivalentes quando apresentam as mesmas soluções.

que é equivalente a:

$$\begin{cases} x = -1 \\ 2x + 3y = 4 \end{cases}$$

Substituindo x = -1 em 2x + 3y = 4, encontramos:

$$2 \cdot (-1) + 3y = 4 \Rightarrow y = 2.$$

A solução do sistema é o par ordenado (-1, 2).

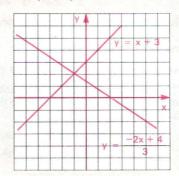
Solução gráfica

O sistema proposto

$$\begin{cases} x - y = -3 \\ 2x + 3y = 4 \end{cases}$$

é equivalente a

$$\begin{cases} y = x + 3 \\ y = \frac{-2x + 4}{3} \end{cases}$$



Construímos os gráficos de

$$y = x + 3$$
 e $y = \frac{-2x + 4}{3}$.

A solução do sistema são as coordenadas do ponto de interseção das retas, portanto (-1, 2).

174. Resolva analítica e graficamente os sistemas de equações.

a)
$$\begin{cases} x + y = 5 \\ x - y = 1 \end{cases}$$

b)
$$\begin{cases} 3x - 2y = -14 \\ 2x + 3y = 8 \end{cases}$$

c)
$$\begin{cases} 2x - 5y = 9 \\ 7x + 4y = 10 \end{cases}$$

d)
$$\begin{cases} 4x + 5y = 2 \\ 6x + 7y = 4 \end{cases}$$

e)
$$\begin{cases} x + 2y = 1 \\ 2x + 4y = 3 \end{cases}$$

f)
$$\begin{cases} 2x + 5y = 0 \\ 3x - 2y = 0 \end{cases}$$

175. Resolva os sistemas de equações:

a)
$$\begin{cases} \frac{1}{x-y} + \frac{1}{x+y} = \frac{3}{4} \\ \frac{1}{x-y} - \frac{1}{x+y} = -\frac{1}{4} \end{cases}$$

a)
$$\left(\frac{1}{x-y} + \frac{1}{x+y} = \frac{3}{4}\right)$$

b) $\left(\frac{3}{x+y+1} - \frac{2}{2x-y+3} = \frac{5}{12}\right)$
 $\left(\frac{2}{x+y+1} + \frac{3}{2x-y+3} = 1\right)$

Faça
$$\frac{1}{x-y} = a$$
 e $\frac{1}{x+y} = b$.

176. Obtenha a equação da reta que passa pelos pontos (1, 2) e (3, -2).

Solução

Seja y = ax + b a equação procurada. O problema estará resolvido se determinarmos os valores de $a \in b$.

Considerando que o ponto (1, 2) pertence à reta de equação y = ax + b, ao substituirmos x = 1 e y = 2 em y = ax + b, temos a sentença verdadeira

$$2 = a \cdot 1 + b$$
 isto é: $a + b = 2$.

Analogamente, para o ponto (3, -2), obtemos:

$$-2 = a \cdot 3 + b$$
 isto é: $3a + b = -2$, as along ob abanshre

Resolvendo o sistema

$$\begin{cases} a + b = 2 \\ 3a + b = -2 \end{cases}$$

encontramos a = -2 e b = 4.

Assim, a equação da reta é y = -2x + 4.

- 177. Obtenha a equação da reta que passa pelos pontos:
 - a) (2, 3) e (3, 5) b) (1, -1) e (-1, 2) c) (3, -2) e (2, -3) d) (1, 2) e (2, 2)
- 178. De uma caixa contendo bolas brancas e pretas, retiraram-se 15 brancas, ficando a relação de 1 branca para 2 pretas. Em seguida, retiraram-se 10 pretas, restando, na caixa, bolas na razão de 4 brancas para 3 pretas. Determine quantas bolas havia, inicialmente, na caixa.
- 179. A função f é definida por f(x) = ax + b. Sabe-se que f(-1) = 3 e f(1) = 1. Determine o valor de f(3).

VI. Imagem

86. Teorema

O conjunto imagem da função afim $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = ax + b, com $a \neq 0$, é \mathbb{R} .

De fato, qualquer que seja $y \in \mathbb{R}$ existe $x = \frac{y - b}{a} \in \mathbb{R}$ tal que

$$f(x) = f\left(\frac{y-b}{a}\right) = a \cdot \frac{y-b}{a} + b = y.$$

VII. Coeficientes da função afim

87. O coeficiente a da função f(x) = ax + b é denominado coeficiente angular ou declividade da reta representada no plano cartesiano.

O coeficiente b da função y = ax + b é denominado coeficiente linear.

Exemplo

Na função y = 2x + 1 o coeficiente angular é 2 e o coeficiente linear é 1. Observe que, se x = 0, temos y = 1. Portanto, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo y.

EXERCÍCIOS

180. Obtenha a equação da reta que passa pelo ponto (1, 3) e tem coeficiente angular igual a 2.

Solução

A equação procurada é da forma y = ax + b.

Se o coeficiente angular é 2, então a = 2.

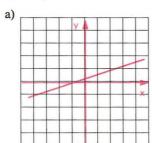
Substituindo x = 1, y = 3 e a = 2 em y = ax + b, vem:

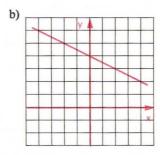
$$3 = 2 \cdot 1 + b \implies b = 1.$$

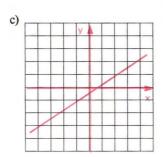
A equação procurada é y = 2x + 1.

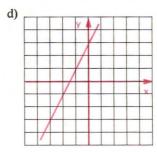
- 181. Obtenha a equação da reta que passa pelo ponto (-2, 4) e tem coeficiente angular igual a -3.
- **182.** Obtenha a equação da reta com coeficiente angular igual a $-\frac{1}{2}$ e passando pelo ponto (-3, 1).
- 183. Obtenha a equação da reta que passa pelo ponto (-2, 1) e tem coeficiente linear igual a 4.

- 184. Obtenha a equação da reta com coeficiente linear igual a -3 e passa pelo ponto (-3, -2).
- 185. Dados os gráficos das funções de IR em IR, obtenha a lei de correspondência dessas funções.

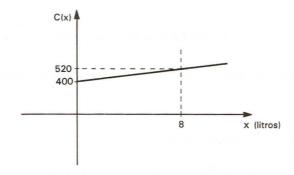








186. O custo C de produção de x litros de uma certa substância é dado por uma função linear de x, com $x \ge 0$, cujo gráfico está representado abaixo.



Nessas condições, o custo de CR\$ 700,00 corresponde à produção de quantos litros?

187. Considere esta tabela para o cálculo do imposto de renda a ser pago pelos contribuintes em um certo mês de 1990.

Sbnogsstjes <mark>v</mark> a ist sikholika	.Fit was fit pub sanger	Section of the control of the contro
Renda líquida (Cr\$)	Alíquota (%)	Parcela a deduzir (Cr\$)
até 25 068,00	isento	
de 25 068,01 a 83 561,00	10	2 506,80
acima de 83 561,00	25	n

Considerando x como a renda líquida de um contribuinte, o imposto a pagar é função f de x. O contribuinte deve multiplicar a sua renda líquida pelo valor da alíquota e subtrair do resultado a parcela a deduzir. Além disso, tal função deve ser continua, para não prejudicar nem beneficiar contribuintes cuja renda líquida se situe em faixas distintas da tabela. Note, por exemplo, que, ao passar da primeira faixa (isentos) para a segunda (alíquota de 10%), a parcela a deduzir (2.506,80) não permite saltos no gráfico.

- 1. Utilize os valores *i* e *d* da tabela e *dê* a expressão da função "imposto a pagar" relativa a uma renda *x*, em cada faixa da tabela.
- Determine o valor de n da tabela para tornar a função obtida no item 1 contínua.

VIII. Zero da função afim

88. Zero de uma função é todo número x cuja imagem é nula, isto é, f(x) = 0.

$$x \notin zero de y = f(x) \iff f(x) = 0$$

Assim, para determinarmos o zero da função afim, basta resolver a equação do 1º grau

$$ax + b = 0$$

que apresenta uma única solução $x = -\frac{b}{a}$.

De fato, resolvendo ax + b = 0, $a \ne 0$, temos:

$$ax + b = 0 \iff ax = -b \iff x = -\frac{b}{a}.$$

Exemplo

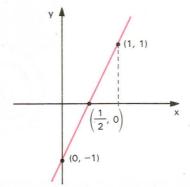
O zero da função
$$f(x)=2x-1$$
 é $x=\frac{1}{2}$ pois, fazendo $2x-1=0$, vem $x=\frac{1}{2}$.

Podemos interpretar o zero da função afim como sendo a abscissa do ponto onde o gráfico corta o eixo dos x.

Exemplo

Fazendo o gráfico da função y = 2x - 1, podemos notar que a reta intercepta o eixo dos x em $x = \frac{1}{2}$, isto é, no ponto $\left(\frac{1}{2}, 0\right)$.

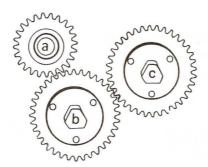
x	у
0	-1
1	1



EXERCÍCIOS

- 188. Na hora de fazer seu testamento, uma pessoa tomou a seguinte decisão: dividiria sua fortuna entre sua filha, que estava grávida, e a prole resultante dessa gravidez, dando a cada criança que fosse nascer o dobro daquilo que caberia à mãe, se fosse do sexo masculino, e o triplo daquilo que caberia à mãe, se fosse do sexo feminino. Nasceram trigêmeos, sendo dois meninos e uma menina. Como veio a ser repartida a herança legada?
- 189. Um pequeno avião a jato gasta sete horas a menos do que um avião a hélice para ir de São Paulo até Boa Vista. O avião a jato voa a uma velocidade média de 660 km/h, enquanto o avião a hélice voa em média a 275 km/h. Qual é a distância entre São Paulo e Boa Vista?
- 190. O salário médio, por hora de trabalho, numa fábrica de 110 trabalhadores é de CR\$ 250,00. Calculando-se, no entanto, apenas com os 100 trabalhadores homens, a média passa a ser CR\$ 265,00. Qual o salário médio das mulheres, por hora de trabalho, em cruzeiros reais?

- 191. Paulo e Joana recebem o mesmo salário por hora de trabalho. Após Paulo ter trabalhado 4 horas e Joana 3 horas e 20 minutos, Paulo tinha a receber CR\$ 150,00 a mais que Joana. Calcule em cruzeiros reais um décimo do que Paulo recebeu.
- 192. Qual o menor número inteiro de voltas que deve dar a roda c da engrenagem da figura, para que a roda a dê um número inteiro de voltas?



193. Supondo que dois pilotos de Fórmula 1 largam juntos num determinado circuito e completam, respectivamente, cada volta em 72 e 75 segundos, responda: depois de quantas voltas do mais rápido, contadas a partir da largada, ele estará uma volta na frente do outro?

IX. Funções crescentes ou decrescentes

89. Função crescente

A função $f: A \longrightarrow B$ definida por y = f(x) é crescente no conjunto $A_1 \subset A$ se, para dois valores quaisquer x_1 e x_2 pertencentes a A_1 , com $x_1 < x_2$, tivermos $f(x_1) < f(x_2)$.

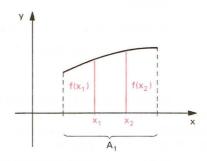
Em símbolos: f é crescente quando

$$(\forall x_1, x_2) (x_1 < x_2 \implies f(x_1) < f(x_2))$$

e isso também pode ser posto assim:

$$(\forall x_1, x_2) (x_1 \neq x_2 \implies \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0).$$

Na linguagem prática (não matemática), isso significa que a função é crescente no conjunto A_I se, ao aumentarmos o valor atribuído a x, o valor de y também aumenta.



Exemplo

A função f(x) = 2x é crescente em IR, pois: $x_1 < x_2 \Rightarrow \underbrace{2x_1}_{f(x_1)} < \underbrace{2x_2}_{f(x_2)}$ para todo $x_1 \in IR$ e todo $x_2 \in IR$.

90. Função decrescente

A função $F: A \to B$ definida por y = f(x) é decrescente no conjunto $A_1 \subset A$ se, para dois valores quaisquer x_1 e x_2 pertencentes a A_1 , com $x_1 < x_2$, tem-se $f(x_1) > f(x_2)$.

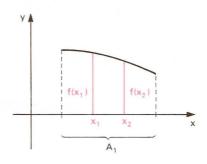
Em símbolos: f é decrescente quando

$$(\forall x_1, x_2) (x_1 < x_2 \Rightarrow f(x_1) > f(x_2))$$

e isso também pode ser posto assim:

$$(\forall x_1, x_2) (x_1 \neq x_2 \Rightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0)$$

Na linguagem prática (não matemática), isso significa que a função é decrescente no conjunto A_I se, ao aumentarmos o valor atribuído a x, o valor de y diminui.

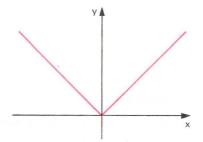


Exemplo

A função f(x) = -2x é decrescente em |R, pois $x_1 < x_2 \Rightarrow \underbrace{-2x_1}_{f(x_1)} > \underbrace{-2x_2}_{f(x_2)}$ para todo $x_1 \in |R|$ e todo $x_2 \in |R|$.

Notemos que uma mesma função y = f(x) pode não ter o mesmo comportamento (crescente ou decrescente) em todo o seu domínio.

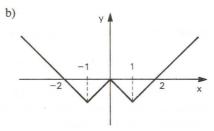
É bastante comum que uma função seja crescente em certos subconjuntos de D e decrescente em outros. O gráfico ao lado representa uma função crescente em $|R_+|$ e decrescente em $|R_-|$.

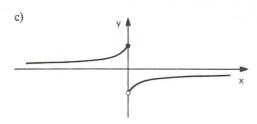


EXERCÍCIO

194. Com base nos gráficos abaixo, de funções de IR em IR, especifique os intervalos em que a função é crescente ou decrescente.

a) y 1 1 2 x





X. Crescimento/decréscimo da função afim

91. **Teoremas**

I) A função afim f(x) = ax + b é crescente se, e somente se, o coeficiente angular a for positivo.

Demonstração

$$f(x) = ax + b \text{ \'e crescente} \iff \frac{f(x_1) - f(x_2)}{x_1 - x_2} > 0 \iff \frac{(ax_1 + b) - (ax_2 + b)}{x_1 - x_2} > 0 \iff \frac{a(x_1 - x_2)}{x_1 - x_2} > 0 \iff a > 0$$

II) A função afim f(x) = ax + b é decrescente se, e somente se, o coeficiente angular a for negativo.

Demonstração

$$f(x) = ax + b \text{ \'e decrescente} \Leftrightarrow \frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0 \Leftrightarrow \\ \Leftrightarrow \frac{(ax_1 + b) - (ax_2 + b)}{x_1 - x_2} < 0 \Leftrightarrow \frac{a(x_1 - x_2)}{x_1 - x_2} < 0 \Leftrightarrow a < 0$$

HE REVISION DES STORE DE EXERCÍCIOS OU

195. Especifique, para cada uma das funções abaixo, se é crescente ou decrescente em R:

a)
$$y = 3x - 2$$

b)
$$y = -4x + 3$$

Solução

- a) É crescente, pois o coeficiente angular é positivo (a = 3).
- b) É decrescente, pois o coeficiente angular é negativo (a = -4).
- 196. Especifique, para cada uma das funções abaixo, se é crescente ou decrescente em IR.

a)
$$y = 1 + 5x$$

c)
$$y = x + 2$$

e)
$$y = -2x$$

a)
$$y = 1 + 5x$$
 c) $y = x + 2$ e) $y = -2$
b) $y = -3 - 2x$ d) $y = 3 - x$ f) $y = 3x$

d)
$$y = 3 - x$$

$$f) y = 3x$$

197. Estude, segundo os valores do parâmetro m, a variação (crescente, decrescente ou constante) da função y = (m-1)x + 2.

Solução

Se m-1>0, isto é, m>1, então a função terá coeficiente angular positivo e, portanto, será crescente em |R|.

Se m-1 < 0, isto é, m < 1, então a função terá coeficiente angular negativo e, portanto, será decrescente em \mathbb{R} .

Se m-1=0, isto é, m=1, então a função é y=(1-1)x+2, ou seja, y=2, que é constante em \mathbb{R} .

- **198.** Estude, segundo os valores do parâmetro *m*, a variação (crescente, decrescente ou constante) das funções abaixo.
 - a) y = (m + 2)x 3

c) y = 4 - (m + 3)x

b) y = (4 - m)x + 2

d) y = m(x - 1) + 3 - x

XI. Sinal de uma função

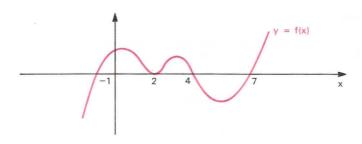
92. Seja a função $f: A \to B$ definida por y = f(x). Vamos resolver o problema "para que valores de x temos f(x) > 0, f(x) = 0 ou f(x) < 0?".

Resolver este problema significa estudar o sinal da função y = f(x) para cada x pertencente ao seu domínio.

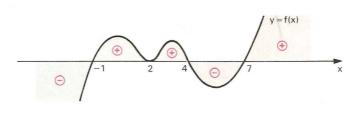
Para se estudar o sinal de uma função, quando a função está representada no plano cartesiano, basta examinar se é positiva, nula ou negativa a ordenada de cada ponto da curva.

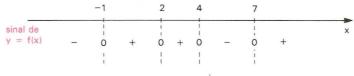
Exemplo

Estudar o sinal da função y=f(x) cujo gráfico está abaixo representado.



Observemos, inicialmente, que interessa o comportamento da curva y = f(x) em relação ao eixo dos x, não importando a posição do eixo dos y. Preparando o gráfico com aspecto prático, temos:





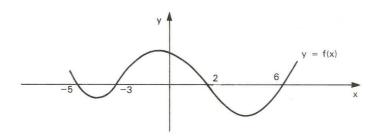
Conclusão:

$$f(x) = 0 \iff x = -1$$
 ou $x = 2$ ou $x = 4$ ou $x = 7$
 $f(x) > 0 \iff -1 < x < 2$ ou $2 < x < 4$ ou $x > 7$
 $f(x) < 0 \iff x < -1$ ou $4 < x < 7$.

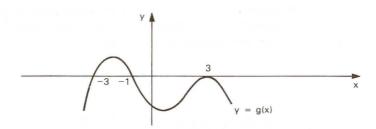
EXERCÍCIO

199. Estude o sinal das funções cujos gráficos estão representados abaixo.

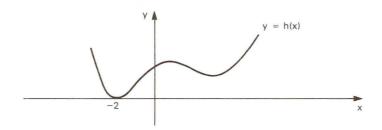
a)



b)



c)



XII. Sinal da função afim

93. Considerando que $x = -\frac{b}{a}$, zero da função afim f(x) = ax + b, é o valor de x para o qual f(x) = 0, examinemos, então, para que valores ocorre f(x) > 0 ou f(x) < 0.

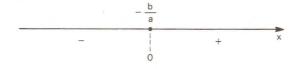
Devemos considerar dois casos.

1.º caso:
$$a > 0$$

$$f(x) = ax + b > 0 \iff ax > -b \iff x > -\frac{b}{a}$$

$$f(x) = ax + b < 0 \iff ax < -b \iff x < -\frac{b}{a}$$

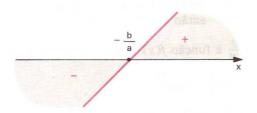
Colocando os valores de x sobre um eixo, o sinal da função f(x) = ax + b, com a > 0, é:



Um outro processo para analisarmos a variação do sinal da função afim é construir o gráfico cartesiano.

Lembremos que na função afim f(x) = ax + b o gráfico cartesiano é uma reta e, se o coeficiente angular a é positivo, a função é crescente.

Construindo o gráfico de $f(x) = ax + b \cos a > 0$, e lembrando que não importa a posição do eixo y, temos:



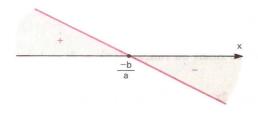
2.° caso:
$$a < 0$$

 $f(x) = ax + b > 0 \Leftrightarrow ax > -b \Leftrightarrow x < -\frac{b}{a}$
 $f(x) = ax + b < 0 \Leftrightarrow ax < -b \Leftrightarrow x > -\frac{b}{a}$

Colocando os valores de x sobre um eixo, o sinal da função f(x) = ax + b, com a < 0, é:



Podemos analisar o sinal da função $f(x) = ax + b \cos a < 0$, construindo o gráfico cartesiano. Lembremos que neste caso a função é decrescente.



Resumo

- 1) A função afim f(x) = ax + b anula-se para $x = -\frac{b}{a}$.
- 2) Para $x > -\frac{b}{a}$, temos:

$$\begin{cases} se & a>0 & ent\tilde{a}o & f(x)=ax+b>0\\ se & a<0 & ent\tilde{a}o & f(x)=ax+b<0 \end{cases}$$

isto é, para $x > -\frac{b}{a}$ a função f(x) = ax + b tem o sinal de a.

3) Para $x < -\frac{b}{a}$, temos:

$$\begin{cases} se & a>0 & ent\tilde{a}o & f(x)=ax+b<0\\ se & a<0 & ent\tilde{a}o & f(x)=ax+b>0 \end{cases}$$

isto é, para $x < -\frac{b}{a}$ a função f(x) = ax + b tem o sinal de -a (sinal contrário ao de a).

Se colocarmos os valores de x sobre um eixo, a regra dos sinais da função afim pode ser assim representada:

$$x < -\frac{b}{a}$$
 $x = -\frac{b}{a}$ $x > -\frac{b}{a}$ $x > \frac{b}{a}$

ou, simplesmente:

$$x = -\frac{b}{a}$$

$$f(x) \text{ tem o sinal de } -a$$

$$0 \qquad f(x) \text{ tem o sinal de } a$$

Exemplos

1°) Estudar os sinais da função f(x) = 2x - 1. Temos:

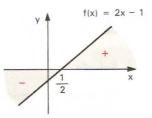
$$f(x) = 0 \implies 2x - 1 = 0 \implies x = \frac{1}{2}$$

$$a = 2 \implies a > 0 \quad e \quad -a < 0.$$

Logo:

para
$$x > \frac{1}{2} \Rightarrow f(x) > 0$$
 (sinal de a)

para
$$x < \frac{1}{2} \Rightarrow f(x) < 0$$
 (sinal de $-a$)

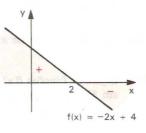


Fazendo o esquema gráfico, temos:

2°) Estudar os sinais de f(x) = -2x + 4. Temos:

$$f(x) = 0 \Rightarrow -2x + 4 = 0 \Rightarrow x = 2$$

 $a = -2 \Rightarrow a < 0 e -a > 0$
para $x > 2 \Rightarrow f(x) < 0$ (sinal de a)
para $x < 2 \Rightarrow f(x) > 0$ (sinal de -a)
Fazendo o esquema gráfico:



EXERCÍCIOS

200. Estude os sinais das funções definidas em IR:

a)
$$y = 2x + 3$$

e)
$$y = 3 - \frac{x}{2}$$

b)
$$y = -3x + 2$$

f)
$$y = \frac{x}{3} + \frac{3}{2}$$

c)
$$y = 4 - x$$

g)
$$y = 2x - \frac{4}{3}$$

d)
$$y = 5 + x$$

h)
$$y = -x$$

201. Seja a função de \mathbb{R} em \mathbb{R} definida por f(x) = 4x - 5. Determine os valores do domínio da função que produzem imagens maiores que 2.

Solução

Os valores do domínio da função que produzem imagens maiores que 2 são os valores de $x \in \mathbb{R}$ tais que

$$4x - 5 > 2$$

e, portanto,

$$x > \frac{7}{4}.$$

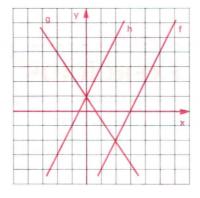
- **202.** Para que valores do domínio da função de |R| em |R| definida por $f(x) = \frac{3x-1}{2}$ a imagem é menor que 4?
- **203.** Para que valores de $x \in \mathbb{R}$ a função $f(x) = \frac{2}{3} \frac{x}{2}$ é negativa?
- **204.** Sejam as funções f(x) = 2x + 3, g(x) = 2 3x e $h(x) = \frac{4x 1}{2}$ definidas em |R|. Para que valores de $x \in |R|$, tem-se:

a)
$$f(x) \ge g(x)$$
?

b)
$$g(x) < h(x)$$
?

c)
$$f(x) \ge h(x)$$
?

205. Dados os gráficos das funções f, g e h definidas em \mathbb{R} , determine os valores de $x \in \mathbb{R}$, tais que:



a)
$$f(x) > g(x)$$

b)
$$g(x) \leq h(x)$$

c)
$$f(x) \ge h(x)$$

d)
$$g(x) > 4$$

e)
$$f(x) \leq 0$$

XIII. Inequações

94. Definição

Sejam as funções f(x) e g(x) cujos domínios são respectivamente $D_1 \subset \mathbb{R}$ e $D_2 \subset \mathbb{R}$. Chamamos *inequação* na incógnita x a qualquer uma das sentenças abertas, abaixo:

$$f(x) > g(x)$$

 $f(x) < g(x)$
 $f(x) \ge g(x)$
 $f(x) \le g(x)$

Exemplos

- 1°) 2x-4>x é uma inequação em que f(x)=2x-4 e g(x)=x.
- 2°) 3x 5 < 2 é uma inequação em que f(x) = 3x 5 e g(x) = 2.
- 3°) $x^2-3 \ge \frac{1}{x}$ é uma inequação em que $f(x) = x^2-3$ e $g(x) = \frac{1}{x}$.
- 4°) $\sqrt{x-2} \leqslant \frac{1}{x-3}$ é uma inequação em que $f(x) = \sqrt{x-2}$ e $g(x) = \frac{1}{x-3}$.

95. Domínio de validade

Chamamos de domínio de validade da inequação f(x) < g(x) o conjunto $D = D_1 \cap D_2$, em que D_1 é o domínio da função f e D_2 é o domínio da função g. É evidente que, para todo $x_0 \in D$, estão definidos $f(x_0)$ e $g(x_0)$, isto é:

$$x_0 \in D \iff (x_0 \in D_1 \ e \ x_0 \in D_2) \iff (f(x_0) \in |R| \ e \ g(x_0) \in |R|).$$

Nos exemplos anteriores, temos:

- 1°) $D = |R \cap R| = |R|$
- 2°) D = $|R \cap R| = |R|$
- 3°) D = $|R \cap R^* = |R^*|$
- 4°.) D = $\{x \in |R \mid x \ge 2\} \cap \{x \in |R \mid x \ne 3\} = \{x \in |R \mid x \ge 2 \text{ e } x \ne 3\}$

96. Solução

O número real x_0 é solução da inequação f(x) > g(x) se, e somente se, é verdadeira a sentença $f(x_0) > g(x_0)$.

Exemplo

O número real 3 é solução da inequação 2x + 1 > x + 3, pois

$$\underbrace{2\cdot 3+1}_{f(3)} > \underbrace{3+3}_{g(3)}$$

é uma sentença verdadeira.

97. Conjunto solução

Ao conjunto S de todos os números reais x tais que f(x) > g(x) é uma sentença verdadeira chamamos de *conjunto solução* da inequação.

Exemplo

A inequação 2x + 1 > x + 3 tem o conjunto solução $S = \{x \in |\mathbb{R} | x > 2\}$, isto é, para qualquer $x_0 \in S$ a sentença $2x_0 + 1 > x_0 + 3$ é verdadeira.

Se não existir o número real x tal que a sentença f(x) > g(x) seja verdadeira, diremos que a inequação f(x) > g(x) é impossível e indicaremos o conjunto solução por $S = \emptyset$.

Exemplo

O conjunto solução da inequação x+1>x+2 é $S=\emptyset$, pois não existe $x_0\in\mathbb{R}$ tal que a sentença $x_0+1>x_0+2$ seja verdadeira.

Resolver uma inequação significa determinar o seu conjunto solução. Se $x_0 \in \mathbb{R}$ é solução da inequação f(x) > g(x), então x_0 é tal que $f(x_0) \in \mathbb{R}$ e $g(x_0) \in \mathbb{R}$, isto é, $x_0 \in D$ (domínio de validade da inequação). Assim sendo, temos

$$x_0 \in S \implies x_0 \in D$$

ou seja, o conjunto solução é sempre subconjunto do domínio de validade da inequação.

98. Inequação equivalente

Duas inequações são equivalentes em $D \subset \mathbb{R}$ se o conjunto solução da primeira é igual ao conjunto solução da segunda.

Exemplos

1°) 3x + 6 > 0 e x + 2 > 0 são equivalentes em |R|, pois o conjunto solução de ambas é $S = \{x \in |R| \mid x > -2\}$.

2°) x < 1 e $x^2 < 1$ não são equivalentes em |R|, pois $x_0 = -2$ é solução da primeira mas não o é da segunda.

99. Princípios de equivalência

Na resolução de uma inequação procuramos sempre transformá-la em outra equivalente e mais "simples", em que o conjunto solução possa ser obtido com maior fácilidade. Surge, então, a pergunta: "Que transformações podem ser feitas em uma inequação para se obter uma inequação equivalente?". A resposta a essa pergunta são os dois princípios seguintes:

P-1) Sejam as funções f(x) e g(x) definidas em D_1 e D_2 , respectivamente. Se a função h(x) é definida em $D_1 \cap D_2$, as inequações

$$f(x) < g(x) e f(x) + h(x) < g(x) + h(x)$$

são equivalentes em $D_1 \cap D_2$.

Exemplos

Seja a inequação

$$3x - 1 > 2x + 3$$

$$f(x)$$

$$g(x)$$

adicionemos h(x) = -2x + 1 aos dois membros:

$$\underbrace{(3x-1)}_{f(x)} + \underbrace{(-2x+1)}_{h(x)} > \underbrace{(2x+3)}_{g(x)} + \underbrace{(-2x+1)}_{h(x)}$$

façamos as simplificações possíveis:

$$\underbrace{ \begin{array}{c} x \\ f(x) + h(x) \end{array}} > \underbrace{ \begin{array}{c} 4 \\ g(x) + h(x) \end{array}}$$

portanto, como 1 é equivalente a 2, temos:

$$S = \{x \in |R \mid x > 4\}.$$

Na prática, aplicamos a propriedade P-1 com o seguinte enunciado: "Em uma inequação podemos transpor um termo de um membro para outro trocando o sinal do termo considerado":

$$f(x) + h(x) < g(x) \implies f(x) < g(x) - h(x).$$

Assim, no exemplo anterior, teríamos:

$$3x - 1 > 2x + 3 \implies 3x - 1 - 2x > 3 \implies x > 3 + 1 \implies x > 4$$
.

- **P-2)** Sejam as funções f(x) e g(x) definidas em D_1 e D_2 , respectivamente. Se a função h(x) é definida em $D_1 \cap D_2$ e tem sinal constante, então:
 - a) se h(x) > 0, as inequações f(x) < g(x) e $f(x) \cdot h(x) < g(x) \cdot h(x)$ são equivalentes em $D_1 \cap D_2$.
 - b) se h(x) < 0, as inequações f(x) < g(x) e $f(x) \cdot h(x) > g(x) \cdot h(x)$ são equivalentes em $D_1 \cap D_2$.

Exemplos

- 1°) $\frac{x}{2} \frac{3}{4} > \frac{1}{3}$ e 6x 9 > 4 são equivalentes em \mathbb{R} , pois a segunda inequação foi obtida a partir da primeira por meio de uma multiplicação por 12.
- 2°.) $-2x^2 + 3x > 1$ e $2x^2 3x < -1$ são equivalentes em |R|, pois a segunda foi obtida da primeira por meio de uma multiplicação por -1 e inversão do sentido da desigualdade.
- 3°.) $\frac{4x-3}{x^2+1} > 0$ e 4x-3 > 0 são equivalentes em $|\mathbb{R}|$. Notemos que a segunda foi obtida da primeira por meio da multiplicação por $x^2+1>0$, $\forall x \in |\mathbb{R}|$.

Na prática, aplicamos a propriedade **P-2** com o seguinte enunciado: "Em uma inequação podemos multiplicar os dois membros pela mesma expressão, mantendo ou invertendo o sentido da desigualdade, conforme essa expressão seja positiva ou negativa, respectivamente".

EXERCÍCIOS

- 206. Resolva as inequações, em IR:
 - a) 4x + 5 > 2x 3
 - b) $5(x + 3) 2(x + 1) \le 2x + 3$
 - c) $3(x + 1) 2 \ge 5(x 1) 3(2x 1)$

207. Resolva, em IR, a inequação:

$$\frac{x+2}{3} - \frac{x-1}{2} \geqslant x.$$

Solução

A inequação proposta é equivalente à inequação que se obtém multiplicando pelo mmc (3, 2) = 6:

$$2(x + 2) - 3(x - 1) \ge 6x$$
.

Efetuando as operações, temos:

$$-x + 7 \ge 6x$$

ou ainda:

$$-7x \geqslant -7$$
.

Dividindo ambos os membros por -7 e lembrando que devemos inverter a desigualdade, temos

$$a) \frac{3x-2}{1-x} \leqslant a$$

$$b) \frac{4x-1}{2x-x} \geqslant 2$$

e, portanto,

$$S = \{x \in |R \mid x \leqslant 1\}.$$

208. Resolva, em IR, as inequações:

a)
$$\frac{x-1}{2} - \frac{x-3}{4} \geqslant 1$$

b)
$$\frac{2x-3}{2} - \frac{5-3x}{3} < 3x - \frac{1}{6}$$

c)
$$(3x + 1)(2x + 1) \le (2x - 1)(3x + 2) - (4 - 5x)$$

d) $(3x - 2)^2 - (3x - 1)^2 > (x + 2)^2 - (x - 1)^2$

d)
$$(3x-2)^2 - (3x-1)^2 > (x+2)^2 - (x-1)^2$$

e)
$$4(x-2) - (3x + 2) > 5x - 6 - 4(x - 1)$$

f)
$$6(x + 2) - 2(3x + 2) > 2(3x - 1) - 3(2x + 1)$$

209. Numa escola é adotado o seguinte critério: a nota da primeira prova é multiplicada por 1, a nota da segunda prova é multiplicada por 2 e a da última prova é multiplicada por 3. Os resultados, após somados, são divididos por 6. Se a média obtida por este critério for maior ou igual a 6,5, o aluno é dispensado das atividades de recuperação. Suponha que um aluno tenha tirado 6,3 na primeira prova e 4,5 na segunda. Quanto precisará tirar na terceira para ser dispensado da recuperação?

210. Resolva, em IR, a inequação:

$$\frac{2x-3}{x-1} \leqslant 2$$

Solução

A inequação proposta é equivalente a $\frac{2x-3}{x-1} - 2 \le 0$, que, reduzindo ao mesmo denominador, fica $\frac{-1}{x-1} \le 0$.

Notemos que a fração $\frac{-1}{x-1}$ deverá ser não positiva; como o numerador -1é negativo, então o denominador x - 1 deverá ser positivo.

$$x-1 > 0 \Leftrightarrow x > 1$$

e, portanto,

$$S = \{x \in |R| |x > 1\}.$$

211. Resolva, em IR, as inequações:

a)
$$\frac{3x-2}{1-y} \le -3$$

b)
$$\frac{4x-5}{2x-1} \ge 3$$

a)
$$\frac{3x-2}{1-x} \le -3$$
 b) $\frac{4x-5}{2x-1} \ge 2$ c) $\frac{-4-3x}{3x+2} < -1$

XIV. Inequações simultâneas

100. A dupla designaldade f(x) < g(x) < h(x) se decompõe em duas inequações simultâneas, isto é, equivale a um sistema de duas equações em x, separadas pelo conectivo e:

$$f(x) < g(x) < h(x) \Leftrightarrow \begin{pmatrix} f(x) < g(x) & \boxed{1} \\ e \\ g(x) < h(x) & \boxed{II} \end{pmatrix}$$

Indicando com S_1 o conjunto solução de (I) e S_2 o conjunto solução de (II), o conjunto solução da dupla designaldade é $S = S_1 \cap S_2$.

Exemplo

Resolver
$$3x + 2 < -x + 3 \le x + 4$$
.

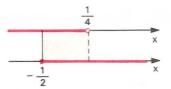
Temos que resolver duas inequações:

1
$$3x + 2 < -x + 3 \implies 4x < 1 \implies x < \frac{1}{4}$$

$$(II) -x + 3 \leqslant x + 4 \implies -2x \leqslant 1 \implies x \geqslant -\frac{1}{2}$$

A interseção desses dois conjuntos é:

$$S = \left\{ x \in |R| - \frac{1}{2} \leqslant x < \frac{1}{4} \right\}.$$



EXERCÍCIOS

212. Resolva as inequações, em IR:

a)
$$-2 < 3x - 1 < 4$$

b)
$$-4 < 4 - 2x \le 3$$

c) $-3 < 3x - 2 < x$

c)
$$-3 < 3x - 2 < x$$

d)
$$x + 1 \le 7 - 3x < \frac{x}{2} - 1$$

e)
$$3x + 4 < 5 < 6 - 2x$$

f)
$$2 - x < 3x + 2 < 4x + 1$$

213. Resolva, em IR, os sistemas de inequações:

a)
$$\begin{cases} 3 - 2x \leqslant 1 \\ 3x - 1 \leqslant 5 \end{cases}$$

b)
$$\begin{cases} 3x - 2 > 4x + 1 \\ 5x + 1 \le 2x - 5 \end{cases}$$

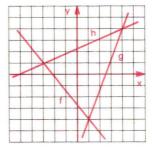
c)
$$\begin{cases} 5 - 2x < 0 \\ 3x + 1 \ge 4x - 5 \\ x - 3 \ge 0 \end{cases}$$

d)
$$\begin{cases} 3x + 2 \ge 5x - 2 \\ 4x - 1 > 3x - 4 \\ 3 - 2x < x - 6 \end{cases}$$

e)
$$\begin{cases} 3x + 2 < 7 - 2x \\ 48x < 3x + 10 \\ 11 - 2(x-3) > 1 - 3(x-5) \end{cases}$$

f)
$$\begin{cases} \frac{2x-5}{1-x} \leqslant -2\\ \frac{x^2+x+3}{x+1} > x \end{cases}$$

- **214.** Com base nos gráficos das funções f, g e h definidas em |R|, determine os valores de $x \in |R|$, tais que:
 - a) $f(x) < g(x) \le h(x)$
 - b) $g(x) \leqslant f(x) < h(x)$
 - c) $h(x) \leq f(x) < g(x)$



XV. Inequações-produto

Sendo f(x) e g(x) duas funções na variável x, as inequações $f(x) \cdot g(x) > 0$, $f(x) \cdot g(x) < 0$, $f(x) \cdot g(x) \ge 0$ e $f(x) \cdot g(x) \le 0$ são denominadas inequações-produto.

101. Vejamos, por exemplo, como determinamos o conjunto solução S da inequação $f(x) \cdot g(x) > 0$.

De acordo com a regra de sinais do produto de números reais, um número x_0 é solução da inequação $f(x) \cdot g(x) > 0$ se, e somente se, $f(x_0)$ e $g(x_0)$, não nulos, têm o mesmo sinal.

Assim, são possíveis dois casos:

1°)
$$f(x) > 0$$
 e $g(x) > 0$

Se S_1 e S_2 são, respectivamente, os conjuntos soluções dessas inequações, então $S_1 \cap S_2$ é o conjunto solução do sistema.

2°)
$$f(x) < 0$$
 e $g(x) < 0$

Se S_3 e S_4 são, respectivamente, os conjuntos soluções dessas inequações, então $S_3 \cap S_4$ é o conjunto solução do sistema.

Daí concluímos que o conjunto solução da inequação do produto $f(x) \cdot g(x) > 0$ é:

$$S = (S_1 \cap S_2) \cup (S_3 \cap S_4).$$

Raciocínio análogo seria feito para a inequação

$$f(x) \cdot g(x) < 0.$$

supil lea

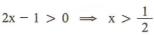
Exemplo

Resolver em \mathbb{R} a inequação (x+2)(2x-1) > 0. Analisemos os dois casos possíveis:

1º caso

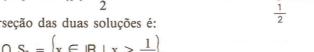
Cada um dos fatores é positivo, isto é:

$$\begin{array}{ccc} x + 2 > 0 & \Longrightarrow & x > -2 \\ e & & e \end{array}$$



A interseção das duas soluções é:

$$S_1\,\cap\,S_2=\Big\{x\in IR\mid x>\frac{1}{2}\Big\}.$$



2º caso

Cada um dos fatores é negativo, isto é:

$$x + 2 < 0 \implies x < -2$$

$$2x - 1 < 0 \implies x < \frac{1}{2}$$

A interseção das duas soluções é:

$$S_3 \cap S_4 = \{x \in |R \mid x < -2\}.$$

O conjunto solução da inequação

$$(x+2)(2x-1) > 0$$
 é:

$$S = (S_1 \cap S_2) \cup (S_3 \cap S_4) = \{x \in |R| \mid x > \frac{1}{2}\} \cup \{x \in |R| \mid x < -2\}$$

portanto:

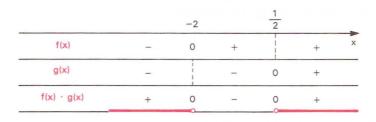
$$S = \left\{ x \in |R \mid x < -2 \text{ ou } x > \frac{1}{2} \right\}.$$

102. Quadro de sinais

Vejamos um outro processo, mais prático, para resolvermos a inequação $(x+2) \cdot (2x-1) > 0$ em |R.

Fazemos inicialmente o estudo dos sinais das funções f(x) = x + 2 e g(x) = 2x - 1.

Com o objetivo de evitar cálculos algébricos no estudo dos sinais do produto $f(x) \cdot g(x)$, usaremos o quadro abaixo, que denominamos *quadro-produto*, no qual figuram os sinais dos fatores e o sinal do produto.

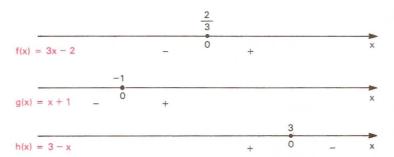


$$S = \left\{ x \in |R| \mid x < -2 \quad \text{ou} \quad x > \frac{1}{2} \right\}.$$

103. Podemos estender o raciocínio empregado no estudo dos sinais de um produto de dois fatores para um produto com mais de dois fatores.

Exemplo

Resolver a inequação (3x-2)(x+1)(3-x) < 0 em |R. Analisando os sinais dos fatores, temos:



Vamos, agora, construir o quadro-produto:

$$S = \left\{ x \in |R| \mid -1 < x < \frac{2}{3} \text{ ou } x > 3 \right\}.$$

104. A inequação $f(x) \cdot g(x) \ge 0$ tem por conjunto solução S a reunião do conjunto solução S_1 da inequação $f(x) \cdot g(x) > 0$ com o conjunto solução S_2 da equação $f(x) \cdot g(x) = 0$, isto é:

$$f(x) \cdot g(x) \geqslant 0 \Leftrightarrow \begin{cases} f(x) \cdot g(x) > 0 \\ ou \\ f(x) \cdot g(x) = 0 \end{cases}$$

Exemplo

Resolver a inequação $(3x+1)(2x-5) \ge 0$ em |R.

A inequação $(3x+1)(2x-5) \ge 0$ é equivalente a:

$$\begin{cases} (3x+1) \cdot (2x-5) > 0 & \text{I} \\ \text{ou} \\ (3x+1) \cdot (2x-5) = 0 & \text{II} \end{cases}$$

Resolvendo (I), temos
$$S_I = \left\{ x \in \mathbb{R} \mid x < -\frac{1}{3} \text{ ou } x > \frac{5}{2} \right\}$$
.

Resolvendo (II), temos $S_2 = \left\{-\frac{1}{3}, \frac{5}{2}\right\}$.

O conjunto solução é:

$$S = S_1 \cup S_2 = \left\{ x \in |R| \mid x < -\frac{1}{3} \text{ ou } x > \frac{5}{2} \right\} \cup \left\{ -\frac{1}{3}, \frac{5}{2} \right\}$$

ou seja:

$$S = \left\{ x \in |R| \mid x \leqslant -\frac{1}{3} \text{ ou } x \geqslant \frac{5}{2} \right\}.$$

Se recorrêssemos ao quadro-produto, teríamos:

$-\frac{1}{3}$ $\frac{5}{2}$					
_	0	+	1	+	×
-	1 1	-	0	+	
+	0	-	0	+	
	- +	$-\frac{1}{3}$ - 0 + 0	- 1 3 - 0 + - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$S = \left\{ x \in |R| \mid x \leqslant -\frac{1}{3} \text{ ou } x \geqslant \frac{5}{2} \right\}.$$

105. Dentre as inequações-produto, são importantes as inequações: $[f(x)]^n > 0$, $[f(x)]^n < 0$, $[f(x)]^n \geqslant 0$ e $[f(x)]^n \leqslant 0$, em que $n \in \mathbb{N}^*$.

Para resolvermos essas inequações, vamos lembrar duas propriedades das potências de base real e expoente inteiro:

1°) "Toda potência de base real e expoente impar conserva o sinal da base", isto é:

$$\begin{array}{l} a^{2n+1} > 0 \iff a > 0 \\ a^{2n+1} = 0 \iff a = 0 \\ a^{2n+1} < 0 \iff a < 0 \quad (n \in \mathbb{N}) \end{array}$$

2°.) "Toda potência de base real e expoente par é um número não negativo", isto é:

$$a^{2n} \geqslant 0, \forall a \in \mathbb{R}, \forall n \in \mathbb{N}$$

Assim sendo, temos as seguintes equivalências:

$$\begin{split} [f(x)]^n > 0 &\iff \begin{cases} f(x) > 0 & \text{se } n \text{ \'e impar.} \\ f(x) \neq 0 & \text{se } n \text{ \'e par} \end{cases} \\ [f(x)]^n < 0 &\iff \begin{cases} f(x) < 0 & \text{se } n \text{ \'e impar.} \\ \not \exists x \in |R| & \text{se } n \text{ \'e par} \end{cases} \end{split}$$

$$\begin{split} [f(x)]^n \geqslant 0 &\iff \begin{cases} f(x) \geqslant 0 & \text{se} & n & \text{\'e impar} \\ \forall \ x \in D(f) & \text{se} & n & \text{\'e par} \end{cases} \\ [f(x)]^n \leqslant 0 &\iff \begin{cases} f(x) \leqslant 0 & \text{se} & n & \text{\'e impar} \\ f(x) = 0 & \text{se} & n & \text{\'e par} \end{cases} \end{split}$$

Exemplos

1°)
$$(3x-2)^3 > 0 \implies 3x-2 > 0 \implies S = \left\{x \in |R| \mid x > \frac{2}{3}\right\}$$

2°)
$$(4x - 3)^6 > 0 \implies 4x - 3 \neq 0 \implies S = \left\{ x \in |R| \mid x \neq \frac{3}{4} \right\}$$

3°)
$$(2x + 1)^5 < 0 \implies 2x + 1 < 0 \implies S = \left\{ x \in |R| \mid x < -\frac{1}{2} \right\}$$

$$4^{\circ}$$
) $(x-2)^4 < 0 \implies S = \emptyset$

5°)
$$(3 - 5x)^7 \ge 0 \implies 3 - 5x \ge 0 \implies S = \left\{ x \in |R| \mid x \le \frac{3}{5} \right\}$$

6°)
$$(4x - 5)^2 \ge 0 \implies S = |R|$$

7°)
$$(8-2x)^4 \le 0 \implies 8-2x = 0 \implies S = [4]$$

EXERCÍCIOS

215. Resolva, em IR, as inequações:

a)
$$(3x + 3)(5x - 3) > 0$$

b)
$$(4-2x)(5+2x)<0$$

c)
$$(5x + 2) (2 - x) (4x + 3) >$$

d)
$$(3x + 2)(-3x + 4)(x - 6) < 0$$

e)
$$(6x - 1)(2x + 7) \ge 0$$

f)
$$(5-2x)(-7x-2) \le 0$$

c)
$$(5x + 2)(2 - x)(4x + 3) > 0$$
 g) $(3 - 2x)(4x + 1)(5x + 3) \ge 0$

h)
$$(5-3x)(7-2x)(1-4x) \le 0$$

216. Resolva, em IR, as inequações:

a)
$$(x-3)^4 > 0$$

b)
$$(3x + 8)^3 < 0$$

c)
$$(4-5x)^6 < 0$$

d)
$$(1 - 7x)^5 > 0$$

e)
$$(3x + 5)^2 \ge 0$$

f)
$$(5x + 1)^3 \le 0$$

g)
$$(4 + 3x)^4 \le 0$$

h)
$$(3x - 8)^5 \ge 0$$

217. Resolva, em IR, a inequação $(x-3)^5 \cdot (2x+3)^6 < 0$.

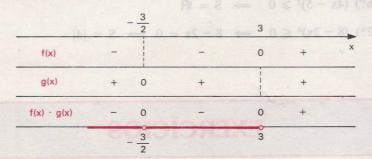
Solução

Estudemos separadamente os sinais das funções $f(x) = (x-3)^5$ e $g(x) = (2x+3)^6$. Lembrando que a potência de expoente ímpar e base real tem o sinal da base, então o *sinal* de $(x-3)^5$ é igual ao *sinal* de x-3, isto é:

A potência de expoente par e base real não nula é sempre positiva, então $(2x+3)^6$ é positivo se $x \neq -\frac{3}{2}$ e $(2x+3)^6$ é nulo se $x=-\frac{3}{2}$, isto é: $-\frac{3}{2}$

$$\frac{3}{g(x)} + 0 + x$$

Fazendo o quadro-produto, temos:



$$S = \left\{ x \in |R| \ x < 3 \ e \ x \neq -\frac{3}{2} \right\}.$$

218. Resolva, em IR, as inequações:

a)
$$(5x + 4)^4 \cdot (7x - 2)^3 \ge 0$$

b)
$$(3x + 1)^3 \cdot (2 - 5x)^5 \cdot (x + 4)^8 > 0$$

c)
$$(x + 6)^7 \cdot (6x - 2)^4 \cdot (4x + 5)^{10} \le 0$$

d)
$$(5x - 1) \cdot (2x + 6)^8 \cdot (4 - 6x)^6 \ge 0$$

219. Determine, em |R|, a solução da inequação $(3x-2)^3 (x-5)^2 (2-x)x > 0$.

XVI. Inequações-quociente

106. Sendo f(x) e g(x) duas funções na variável x, as inequações

$$\frac{f(x)}{g(x)} > 0, \frac{f(x)}{g(x)} < 0, \frac{f(x)}{g(x)} \geqslant 0$$
 e $\frac{f(x)}{g(x)} \leqslant 0$

são denominadas inequações-quociente.

Considerando que as regras de sinais do produto e do quociente de números reais são análogas, podemos, então, construir o quadro-quociente de modo análogo ao quadro-produto, observando o fato de que o denominador de uma fração não pode ser nulo.

Exemplo

Resolver em IR a inequação $\frac{3x+4}{1-x} \le 2$. Temos

$$\frac{3x+4}{1-x} \le 2 \implies \frac{3x+4}{1-x} - 2 \le 0 \implies \frac{3x+4-2(1-x)}{1-x} \le 0 \implies \frac{5x+2}{1-x} \le 0$$

Fazendo o quadro-quociente, temos:

$$S = \left\{ x \in |R| \, |x| \leqslant -\frac{2}{5} \quad \text{ou} \quad |x| > 1 \right\}.$$

Podemos resolver a inequação $\frac{3x + 4}{1 - x} \le 2$, multiplicando por h(x) = 1 - x e examinando dois casos:

a)
$$h(x) = 1 - x > 0$$
, isto \acute{e} , $x < 1$

$$\frac{3x + 4}{1 - x} \leqslant 2 \implies 3x + 4 \leqslant 2(1 - x) \implies x \leqslant -\frac{2}{5}$$

$$S_1 = \{x \in |R| \mid x < 1\} \cap \left\{x \in |R| \mid x \leqslant -\frac{2}{5}\right\} = \left\{x \in |R| \mid x \leqslant -\frac{2}{5}\right\}.$$

b)
$$h(x) = 1 - x < 0$$
, isto é, $x > 1$
 $\frac{3x + 4}{1 - x} \le 2 \implies 3x + 4 \ge 2(1 - x) \implies x \ge -\frac{2}{5}$

$$S_2 = \{x \in |R| |x > 1\} \cap \left\{x \in |R| |x > -\frac{2}{5}\right\} = \{x \in |R| |x > 1\}.$$

O conjunto solução é:

$$S = S_1 \cup S_2 = \left\{ x \in |R| \ x \leqslant -\frac{2}{5} \ \text{ou} \ x > 1 \right\}.$$

Daremos sempre preferência ao método do quadro-quociente, por sua maior simplicidade.

EXERCÍCIOS

220. Resolva as inequações, em IR:

a)
$$\frac{2x+1}{x+2} > 0$$

b)
$$\frac{3x-2}{3-2x} < 0$$

c)
$$\frac{3-4x}{5x+1} \ge 0$$

d)
$$\frac{-3 - 2x}{3x + 1} \le 0$$

221. Resolva, em IR, as inequações:

a)
$$\frac{5x-3}{3x-4} > -1$$

b)
$$\frac{x-1}{x+1} \ge 3$$

c)
$$\frac{6x}{x+3} < 5$$

d)
$$\frac{5x-2}{3x+4} < 2$$

e)
$$\frac{3x-5}{2x-4} \le 1$$

f)
$$\frac{x+1}{x-2} \ge 4$$

222. Resolva as inequações, em IR:

a)
$$\frac{(1-2x)(3+4x)}{(4-x)} > 0$$

b)
$$\frac{(3x+1)}{(2x+5)(5x+3)} < 0$$

c)
$$\frac{(5x + 4)(4x + 1)}{(5 - 4x)} \ge 0$$

d)
$$\frac{(1-2x)}{(5-x)(3-x)} \le 0$$

223. Resolva, em IR, as inequações:

a)
$$\frac{1}{x-4} < \frac{2}{x+3}$$

e)
$$\frac{5x+2}{4x-1} > \frac{5x-1}{4x+5}$$

b)
$$\frac{1}{x-1} < \frac{2}{x-2}$$

f)
$$\frac{1}{x-1} + \frac{2}{x-2} - \frac{3}{x-3} < 0$$

c)
$$\frac{x+1}{x+2} > \frac{x+3}{x+4}$$

g)
$$\frac{2}{3x-1} \ge \frac{1}{x-1} - \frac{1}{x+1}$$

d)
$$\frac{x+5}{3x+2} \le \frac{x-2}{3x+5}$$

224. Ache os valores reais de x para os quais vale a desigualdade:

$$-\frac{4}{x}+\frac{3}{2}\geqslant -\frac{1}{x}.$$

Funções Quadráticas

I. Definição

107. Uma aplicação f de |R| em |R| recebe o nome de *função quadrática* ou *do 2.º grau* quando associa a cada $x \in |R|$ o elemento $(ax^2 + bx + c) \in |R|$, em que a, b, c são números reais dados e $a \neq 0$.

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

Exemplos de funções quadráticas:

a)
$$f(x) = x^2 - 3x + 2$$
 em que $a = 1$, $b = -3$, $c = 2$
b) $f(x) = 2x^2 + 4x - 3$ em que $a = 2$, $b = 4$, $c = -3$
c) $f(x) = -3x^2 + 5x - 1$ em que $a = -3$, $b = 5$, $c = -1$
d) $f(x) = x^2 - 4$ em que $a = 1$, $b = 0$, $c = -4$
e) $f(x) = -2x^2 + 5x$ em que $a = -2$, $b = 5$, $c = 0$
f) $f(x) = -3x^2$ em que $a = -3$, $b = 0$, $c = 0$

II. Gráfico

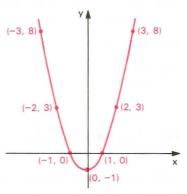
108. O gráfico da função quadrática é uma parábola. (*)

^(*) Isso é provado no volume de Geometria Analítica desta coleção.

Exemplos

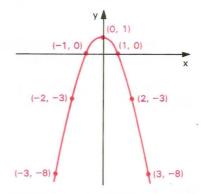
1°) Construir o gráfico de $y = x^2 - 1$. (-3, 8)

Χ,	$y = x^2 - 1$
-3	8
-2	3
-1	0
0	-1
1	0
2	3
3	8



2°) Construir o gráfico de $y = -x^2 + 1$.

x	$y = -x^2 + 1$
-3	-8
-2	-3
-1	0
0	1
1	0
2	-3
3	-8



EXERCÍCIOS

225. Construa os gráficos das funções definidas em IR:

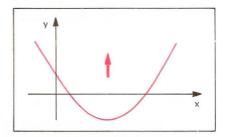
- a) $y = x^2$
- d) $y = -2x^2$ g) $y = -3x^2 3$

- b) $y = -x^2$
- e) $y = x^2 2x$ h) $y = x^2 2x + 4$
- c) $y = 2x^2$
- f) $y = -2x^2 4x$

- **226.** Em que condições a função quadrática $y = (m^2 4)x^2 (m + 2)x 1$ está definida?
- **227.** Determine uma função quadrática tal que f(-1) = -4, f(1) = 2 e f(2) = -1.
- **228.** Seja $f(x) = ax^2 + bx + c$. Sabendo que f(1) = 4, f(2) = 0 e f(3) = -2, detérmine o produto abc.

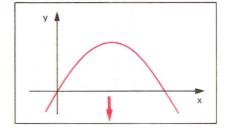
III. Concavidade

109. A parábola representativa da função quadrática $y = ax^2 + bx + c$ pode ter a concavidade voltada para "cima" ou voltada para "baixo".



Se a > 0, a concavidade da parábola está voltada para cima.

Se a < 0, a concavidade da parábola está voltada para baixo.



IV. Forma canônica

110. A construção do gráfico da função quadrática $y = ax^2 + bx + c$ com o auxílio de uma tabela de valores x e y, como foi feito no item anterior, tornase às vezes um trabalho impreciso, pois na tabela atribuímos a x alguns valores inteiros e pode acontecer que em determinada função quadrática os valores de abscissa (valores de x), em que a parábola intercepta o eixo dos x ou a abscissa do ponto da parábola de maior ou menor ordenada, não são inteiros.

Para iniciarmos um estudo analítico mais detalhado da função quadrática, vamos primeiramente transformá-la em outra forma mais conveniente, chamada *forma canônica*.

$$\begin{split} f(x) &= ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left[x^2 + \frac{b}{a}x + \frac{b^2}{4a^2} - \frac{b^2}{4a^2} + \frac{c}{a}\right] = \\ &= a\left[\left(x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}\right) - \left(\frac{b^2}{4a^2} - \frac{c}{a}\right)\right] = a\left[\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b^2 - 4ac}{4a^2}\right)\right] \end{split}$$

Representando b^2-4ac por Δ , também chamado discriminante do trinômio do segundo grau, temos a forma canônica.

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

V. Zeros

111. Os zeros ou raízes da função quadrática $f(x) = ax^2 + bx + c$ são os valores de x reais tais que f(x) = 0 e, portanto, as soluções da equação do segundo grau

$$ax^2 + bx + c = 0.$$

Utilizando a forma canônica, temos:

$$ax^{2} + bx + c = 0 \iff a \left[\left(x + \frac{b}{2a} \right)^{2} - \frac{\Delta}{4a^{2}} \right] = 0 \iff \left(x + \frac{b}{2a} \right)^{2} - \frac{\Delta}{4a^{2}} = 0 \iff \left(x + \frac{b}{2a} \right)^{2} = \frac{\Delta}{4a^{2}} \iff x + \frac{b}{2a} = \pm \frac{\sqrt{\Delta}}{2a} \iff x = \frac{-b \pm \sqrt{\Delta}}{2a}$$

112. Número de raízes

Observe que a existência de raízes reais para a equação do segundo grau $ax^2 + bx + c = 0$ fica condicionada ao fato de $\sqrt{\Delta}$ ser real. Assim, temos três casos a considerar:

1°) $\Delta > 0$, a equação apresentará duas raízes distintas, que são:

$$x_1 \,=\, \frac{-b \,+\, \sqrt{\Delta}}{2a} \quad e \quad x_2 \,=\, \frac{-b - \sqrt{\Delta}}{2a}.$$

2°) $\Delta = 0$, a equação apresentará duas raízes iguais, que são:

$$x_1 = x_2 = \frac{-b}{2a}$$
.

3°) $\Delta < 0$, sabendo que nesse caso $\sqrt{\Delta} \notin \mathbb{R}$, diremos que a equação não apresenta raízes reais.

Resumo

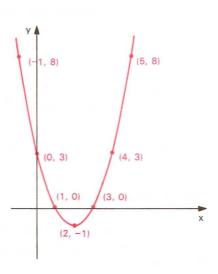
$$ax^2 + bx + c = 0 \iff \begin{cases} \Delta > 0 \Rightarrow x = \frac{-b + \sqrt{\Delta}}{2a} \text{ ou } x = \frac{-b - \sqrt{\Delta}}{2a} \\ \Delta = 0 \Rightarrow x = \frac{-b}{2a} \\ \Delta < 0 \Rightarrow \text{não existem raízes reais.} \end{cases}$$

113. Significado geométrico das raízes

Interpretando geometricamente, dizemos que os zeros da função quadrática são as abscissas dos pontos onde a parábola corta o eixo dos x.

Exemplo

Construindo o gráfico da função $y = x^2 - 4x + 3$ podemos notar que a parábola corta o eixo dos x nos pontos de abscissas I e 3, que são as raízes da equação $x^2 - 4x + 3 = 0$.



EXERCÍCIOS

229. Determine os zeros reais das funções:

a)
$$f(x) = x^2 - 3x + 2$$

b)
$$f(x) = -x^2 + 7x - 12$$

c)
$$f(x) = 3x^2 - 7x + 2$$

d)
$$f(x) = x^2 - 2x + 2$$

e)
$$f(x) = x^2 + 4x + 4$$

f)
$$f(x) = -x^2 + \frac{3}{2}x + 1$$

g)
$$f(x) = x^2 - 2x - 1$$

h)
$$f(x) = -x^2 + 3x - 4$$

i)
$$f(x) = x^2 - \sqrt{2}x + \frac{1}{2}$$

j)
$$f(x) = x^2 + (1 - \sqrt{3})x - \sqrt{3}$$

k)
$$f(x) = 2x^2 - 4x$$

1)
$$f(x) = -3x^2 + 6$$

m)
$$f(x) = 4x^2 + 3$$

n)
$$f(x) = -5x^2$$

- 230. Uma empresa produz e vende determinado tipo de produto. A quantidade que ela consegue vender varia conforme o preço, da seguinte forma: a um preço y ela consegue vender x unidades do produto, de acordo com a equação $y = 50 - \frac{x}{3}$. Sabendo que a receita (quantidade vendida vezes o preço de venda) obtida foi de CR\$ 1 250,00, qual foi a quantidade vendida?
- 231. Resolva o sistema

$$\begin{cases} \frac{1}{x} + \frac{1}{y} = \frac{7}{12} \\ x \cdot y = 12 \end{cases}$$

- **232.** a) Resolva a equação $x^2 3x 4 = 0$.
 - b) Resolva o sistema $\begin{cases} 2x + y = 4 \\ 2x + xy = -8 \end{cases}$.
- **233.** Determine os zeros reais da função $f(x) = x^4 3x^2 4$.

Solução

Queremos determinar $x \in \mathbb{R}$ tal que $x^4 - 3x^2 - 4 = 0$. Fazendo a substituição $z = x^2$, vem:

$$z^2 - 3z - 4 = 0$$

cuja solução é z = 4 ou z = -1, mas $z = x^2$; então:

$$x^2 = 4 \implies x = \pm 2$$

$$x^2 = -1 \implies \nexists x \in \mathbb{R}.$$

Logo, os zeros reais da função $f(x) = x^4 - 3x^2 - 4$ são x = 2 e x = -2.

- 234. Determine os zeros reais das funções:
 - a) $f(x) = x^4 5x^2 + 4$
 - b) $f(x) = -x^4 + 5x^2 + 36$
 - c) $f(x) = x^4 x^2 6$
 - d) $f(x) = x^4 4x^2 + 4$

- e) $f(x) = 2x^4 + 6x^2 + 4$
- f) $f(x) = -x^4 + 3x^2 3$
- g) $f(x) = 3x^4 12x^2$
- h) $f(x) = x^6 7x^3 8$
- **235.** Determine os valores de m para que a função quadrática $f(x) = mx^2 + (2m 1)x + (m 2)$ tenha dois zeros reais e distintos.

Solução

Na função
$$f(x) = mx^2 + (2m - 1)x + (m - 2)$$
, temos:
 $a = m, b = 2m - 1, c = m - 2 = \Delta = 4m + 1.$

Considerando que a função é quadrática e os zeros são reais e distintos, então:

$$a = m \neq 0$$
 e $\Delta = 4m + 1 > 0$

ou seja:

Sebendo que a réceita (
$$\frac{1}{4}$$
) anidade venés o prece de venda) obtida foi de CR3 (250,00, qual $\frac{1}{4}$).

- **236.** Determine os valores de m para que a função quadrática $f(x) = (m-1)x^2 + (2m+3)x + m$ tenha dois zeros reais e distintos.
- **237.** Determine os valores de m para que a equação do 2º grau $(m+2)x^2 + (3-2m)x + (m-1) = 0$ tenha raízes reais.
- **238.** Determine os valores de m para que a função $f(x) = mx^2 + (m + 1)x + (m + 1)$ tenha um zero real duplo.
- **239.** Determine os valores de m para que a equação $x^2 + (3m + 2)x + (m^2 + m + 2) = 0$ tenha duas raízes reais iguais.
- **240.** Determine os valores de m para que a função $f(x) = (m + 1)x^2 + (2m + 3)x + (m 1)$ não tenha zeros reais.
- **241.** Determine os valores de m para que a equação $mx^2 + (2m 1)x + (m 2) = 0$ não tenha raízes reais.
- **242.** O trinômio $ax^2 + bx + c$ tem duas raízes reais e distintas; α e β são dois números reais não nulos. O que se pode afirmar sobre as raízes do trinômio $\frac{a}{\alpha} x^2 + \beta bx + \alpha \beta^2 c$?

- **243**. Mostre que na equação do 2º grau $ax^2 + bx + c = 0$, de raízes reais x_1 e x_2 , temos para a soma S das raízes $S = x_1 + x_2 = \frac{-b}{a}$ e para produto P das raízes $P = x_1 \cdot x_2 = \frac{c}{a}$.
- **244.** Na equação do 2º grau $2x^2 5x 1 = 0$, de raízes x_1 e x_2 , calcule:
 - a) $x_1 + x_2$

d) $(x_1)^2 + (x_2)^2$

b) $x_1 \cdot x_2$

e) $\frac{x_1}{x_2} + \frac{x_2}{x_1}$

c) $\frac{1}{x_1} + \frac{1}{x_2}$

- f) $(x_1)^3 + (x_2)^3$
- **245**. As raízes da equação $2x^2 2mx + 3 = 0$ são positivas e uma é o triplo da outra. Calcule o valor de m.
- **246.** As raízes da equação $x^2 + bx + 47 = 0$ são inteiras. Calcule o módulo da diferença entre essas raízes.
- **247**. Se r e s são as raízes da equação $ax^2 + bx + c = 0$ e $a \neq 0$ e $c \neq 0$, qual é o valor de $\frac{1}{r^2} + \frac{1}{s^2}$?
- **248.** Determine o parâmetro m na equação $x^2 + mx + m^2 m 12 = 0$, de modo que ele tenha uma raiz nula e a outra positiva.
- **249.** Dadas as equações $x^2 5x + k = 0$ e $x^2 7x + 2k = 0$, sabe-se que uma das raízes da segunda equação é o dobro de uma das raízes da primeira equação. Sendo $k \neq 0$, determine k.
- **250.** Mostre que uma equação do 2º grau de raízes x_1 e x_2 é a equação $x^2 Sx + P = 0$ em que $S = x_1 + x_2$ e $P = x_1 \cdot x_2$.
- 251. Obtenha uma equação do segundo grau de raízes:
 - a) 2 e -3

d) 1 e $-\sqrt{2}$

b) $\frac{1}{2}$ e $-\frac{3}{2}$

e) $1 + \sqrt{3}$ e $1 - \sqrt{3}$

- c) 0,4 e 5
- **252.** Se a equação $ax^2 + bx + c = 0$, $a \ne 0$, admite as raízes reais não nulas x_1 e x_2 , obtenha a equação de raízes:
 - a) $(x_1)^2$ e $(x_2)^2$

c) $\frac{x_1}{x_2}$ e $\frac{x_2}{x_1}$

b) $\frac{1}{x_1}$ e $\frac{1}{x_2}$

d) $(x_1)^3$ e $(x_2)^3$

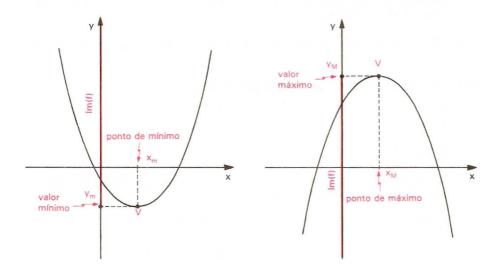
- **253.** Determine m na equação $mx^2 2(m-1)x + m = 0$ para que se tenha $\frac{x_1}{x_2} + \frac{x_2}{x_1} = 4$, em que x_1 e x_2 são as raízes da equação.
- **254.** O trinômio $f(x) = x^2 px + q$ tem por raízes $a \in b$, $a \neq 0 \in b \neq 0$. Qual é o trinômio cujas raízes são $\frac{1}{a} \in \frac{1}{b}$?
- **255.** Sejam m, n dois números inteiros positivos tais que m, n são ímpares consecutivos e $m \cdot n = 1599$. Indique o valor de m + n.

VI. Máximo e mínimo

114. Definições

Dizemos que o número $y_M \in Im(f)$ é o valor máximo da função y = f(x) se, e somente se, $y_M \geqslant y$ para qualquer $y \in I_M(f)$. O número $x_M \in D(f)$ tal que $y_M = f(x_M)$ é chamado ponto de máximo da função.

Dizemos que o número $y_m \in Im(f)$ é o valor mínimo da função y = f(x) se, e somente se, $y_m \leq y$ para qualquer $y \in I_m(f)$. O número $x_m \in D(f)$ tal que $y_m = f(x_m)$ é chamado ponto de mínimo da função.



115. Teoremas

I. Se a < 0, a função quadrática $y = ax^2 + bx + c$ admite o valor máximo $y_M = -\frac{\Delta}{4a}$ para $x_M = -\frac{b}{2a}$.

II. Se a>0, a função quadrática $y=ax^2+bx+c$ admite o valor mínimo $y_m=-\frac{\Delta}{4a}$ para $x_m=-\frac{b}{2a}$.

Demonstração

I. Consideremos a função quadrática na forma canônica:

$$y = a \left[\left(x + \frac{b}{2a} \right) \right]^2 - \frac{\Delta}{4a^2}$$
 (1)

Sendo a < 0, o valor de y será tanto maior quanto menor for o valor da diferença $\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}$.

Nessa diferença, $-\frac{\Delta}{4a^2}$ é constante (porque não depende de x; só depende de a, b, c) e $\left(x + \frac{b}{2a}\right)^2 \ge 0$ para todo x real. Então a diferença assume o menor valor possível quando $\left(x + \frac{b}{2a}\right)^2 = 0$, ou seja, quando $x = -\frac{b}{2a}$.

Para $x = -\frac{b}{2a}$, temos na expressão (1):

$$y = a \left[\left(-\frac{b}{2a} + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right] = a \left[0^2 - \frac{\Delta}{4a^2} \right] = -\frac{\Delta}{4a}.$$

II. Prova-se de modo análogo.

116. Aplicações

1º) Na função real $f(x) = 4x^2 - 4x - 8$, temos: a = 4, b = -4, c = -8 e $\Delta = 144$.

Como a = 4 > 0, a função admite um valor mínimo:

$$y_m = \frac{-\Delta}{4a} = \frac{-144}{4 \cdot 4}$$
, isto é: $y_m = -9$

em

$$x_m = \frac{-b}{2a} = \frac{4}{2 \cdot 4}$$
, isto é: $x_m = \frac{1}{2}$.

2°) Na função real $f(x) = -x^2 + x + \frac{3}{4}$, temos: a = -1, b = 1, $c = \frac{3}{4}$ e $\Delta = 4$.

Como a = -1 < 0, a função admite um valor máximo:

$$y_M = \frac{-\Delta}{4a} = \frac{-4}{4(-1)}$$
, isto é: $y_M = 1$

em

$$x_M = \frac{-b}{2a} = \frac{-1}{2(-1)}$$
, isto é: $x_M = \frac{1}{2}$.

VII. Vértice da parábola

117. O ponto $V\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$ é chamado vértice da parábola representativa da função quadrática.

EXERCÍCIOS

256. Determine os vértices das parábolas:

a)
$$y = x^2 - 4$$

d)
$$y = -x^2 + \frac{1}{2}x + \frac{3}{2}$$

b)
$$y = -x^2 + 3x$$

e)
$$y = -x^2 + x - \frac{2}{9}$$

c)
$$y = 2x^2 - 5x + 2$$

f)
$$y = x^2 - \frac{7}{3}x - 2$$

257. Determine o valor máximo ou o valor mínimo e o ponto de máximo ou o ponto de mínimo das funções abaixo, definidas em IR.

a)
$$y = 2x^2 + 5x$$

d)
$$y = x^2 - \frac{7}{2}x + \frac{5}{2}$$

b)
$$y = -3x^2 + 12x$$

e)
$$y = -x^2 + 5x - 7$$

c)
$$y = 4x^2 - 8x + 4$$

f)
$$y = -\frac{x^2}{2} + \frac{4}{3}x - \frac{1}{2}$$

258. Determine o valor de m na função real $f(x) = 3\dot{x}^2 - 2x + m$ para que o valor mínimo seja $\frac{5}{3}$.

- **259.** Determine o valor de m na função real $f(x) = -3x^2 + 2(m-1)x + (m+1)$ para que o valor máximo seja 2.
- **260.** Determine o valor de m na função real $f(x) = mx^2 + (m-1)x + (m+2)$ para que o valor máximo seja 2.
- **261.** Determine o valor de m na função real $f(x) = (m-1)x^2 + (m+1)x m$ para que o valor mínimo seja I.
- 262. Dentre todos os números reais de soma 8, determine aqueles cujo produto é máximo.

Solução

Indicando por x e z esses números e por y o seu produto, temos:

$$x + z = 8$$
 $y = x \cdot z$

Como precisamos ficar com uma só das variáveis, x ou z, fazemos

$$x + z = 8 \implies z = 8 - x$$

e portanto:

$$y = x \cdot z \implies y = x(8 - x) \implies y = -x^2 + 8x$$

Como a = -1 < 0, y é máximo quando quando por la compansa de la

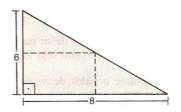
$$x = \frac{-b}{2a} = \frac{-8}{2 \cdot (-1)} \implies x = 4.$$

Substituindo em z = 8 - x, vem z = 4.

Logo, os números procurados são 4 e 4.

- **263.** Seja $y = -x^2 + 5x 1$. Dado que x varia no intervalo fechado [0, 6], determine o maior (y_M) e o menor (y_m) valor que y assume.
- **264.** Dada $f(x) = 2x^2 + 7x 15$, para que valor de x a função atinge um máximo?
- **265.** A parábola de equação $y = -2x^2 + bx + c$ passa pelo ponto (1, 0) e seu vértice é o ponto de coordenadas (3, v). Determine v.
- **266.** Dentre todos os números reais x e z tais que 2x + z = 8, determine aqueles cujo produto é máximo.
- **267.** Dentre todos os retângulos de perímetro 20 cm, determine o de área máxima.
- 268. Dentre todos os números x e z de soma 6, determine aqueles cuja soma dos quadrados é mínima.
- **269.** Determine o retângulo de área máxima localizado no primeiro quadrante, com dois lados nos eixos cartesianos e um vértice na reta y = -4x + 5.

270. É dada uma folha de cartolina como na figura ao lado. Cortando a folha na linha pontilhada resultará um retângulo. Determine esse retângulo, sabendo que a área é máxima.



- **271.** Determine o retângulo de maior área contido num triângulo equilátero de lado 4 cm, estando a base do retângulo num lado do triângulo.
- **272.** Num triângulo isósceles de base 6 cm e altura 4 cm está inscrito um retângulo. Determine o retângulo de área máxima, sabendo que a base do retângulo está sobre a base do triângulo.
- **273.** Uma conta perfurada de um colar é enfiada em um arame fino com o formato da parábola $y = x^2 6$. Do ponto P de coordenadas (4, 10) deixa-se a conta deslizar no arame até chegar ao ponto Q de ordenada -6. Qual é a distância horizontal percorrida pela conta (diferença entre as abscissas de $P \in Q$)?
- 274. Uma parede de tijolos será usada como um dos lados de um curral retangular. Para os outros lados iremos usar 400 metros de tela de arame, de modo a produzir área máxima. Qual é o quociente de um lado pelo outro?

VIII. Imagem

118. Para determinarmos a imagem da função quadrática, tomemos inicialmente a função na forma canônica:

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

ou seja, $f(x) = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a}$. Observemos que $\left(x + \frac{b}{2a}\right)^2 \geqslant 0$ para qualquer $x \in \mathbb{R}$; então temos que considerar dois casos:

1º caso:

$$a > 0 \implies a\left(x + \frac{b}{2a}\right)^2 \ge 0$$
, e, portanto:
 $y = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} \ge \frac{-\Delta}{4a}$.

2º caso:

$$a < 0 \implies a\left(x + \frac{b}{2a}\right)^2 \le 0$$
, e, portanto:

$$y = a\left(x + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a} \leqslant \frac{-\Delta}{4a}.$$

Resumindo:

$$a > 0 \implies y \geqslant \frac{-\Delta}{4a}, \ \forall x \in \mathbb{R}$$

 $a < 0 \implies y \leqslant \frac{-\Delta}{4a}, \ \forall x \in \mathbb{R}.$

ou ainda:

$$a > 0 \implies \text{Im}(f) = \left\{ y \in |R| \ y \geqslant -\frac{\Delta}{4a} \right\}$$

 $a < 0 \implies \text{Im}(f) = \left\{ y \in |R| \ y \leqslant -\frac{\Delta}{4a} \right\}$

Exemplos

1°.) Obter a imagem da função f de |R| em |R| definida por $f(x) = 2x^2 - 8x + 6$.

Na função $f(x) = 2x^2 - 8x + 6$, temos:

$$a = 2$$
, $b = -8$ e $c = 6$

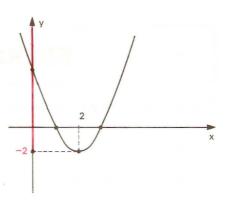
logo:

$$\Delta = b^2 - 4ac = (-8)^2 - 4 \cdot 2 \cdot 6 = 16$$

e portanto:
$$\frac{-\Delta}{4a} = \frac{-16}{4 \cdot 2} = -2$$
.

Como a = 2 > 0, temos:

$$Im(f) = \{ y \in |\mathbb{R} \mid y \geqslant -2 \}.$$



2º) Obter a imagem da função f de IR em IR definida por

$$f(x) = -\frac{x^2}{3} + 2x - \frac{5}{3}.$$

Na função $f(x) = -\frac{x^2}{3} + 2x - \frac{5}{3}$, temos:

$$a = -\frac{1}{3}$$
, $b = 2$ e $c = -\frac{5}{3}$

logo:

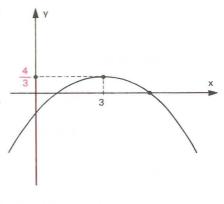
$$\Delta = b^2 - 4ac = 2^2 - 4 \cdot \left(-\frac{1}{3} \right) \left(-\frac{5}{3} \right) = \frac{16}{9}$$

e portanto:

$$\frac{-\Delta}{4a} = \frac{-\frac{16}{9}}{4\left(\frac{-1}{3}\right)} = \frac{4}{3}.$$

Como $a = -\frac{1}{3} < 0$, temos:

$$Im(f) = \left\{ y \in |\mathbb{R} \mid y \leqslant \frac{4}{3} \right\}.$$



EXERCÍCIOS

275. Determine a imagem das funções definidas em IR:

a)
$$y = x^2 - 3x$$

d)
$$y = -4x^2 + 8x + 12$$

b)
$$y = -x^2 + 4$$

e)
$$y = -x^2 + \frac{3}{2}x + 1$$

c)
$$y = 3x^2 - 9x + 6$$

f)
$$y = \frac{1}{2}x^2 + x + 1$$

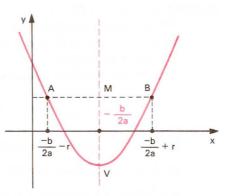
- **276.** Determine m na função $f(x) = 3x^2 4x + m$ definida em |R| para que a imagem seja $Im = \{y \in |R| y \ge 2\}$.
- **277.** Determine m na função $f(x) = -\frac{x^2}{3} + mx \frac{1}{2}$ definida em |R| para que a imagem seja $Im = \{y \in |R| | y \le 7\}$.

IX. Eixo de simetria

119. Teorema

"O gráfico da função quadrática admite um eixo de simetria perpendicular ao eixo dos x e que passa pelo vértice."

Os pontos da reta perpendicular ao eixo dos x e que passa pelo vértice da parábola obedecem à equação $x = \frac{-b}{2a}$, pois todos os pontos dessa reta têm abscissa $\frac{-b}{2a}$.



Para provarmos que a parábola tem eixo de simetria na reta $x=\frac{-b}{2a}$, devemos mostrar que dado um ponto $A\left(\frac{-b}{2a}-r,y\right)$, com $r\in\mathbb{R}$, pertencente ao gráfico da função, existe $B\left(\frac{-b}{2a}+r,y\right)$ também pertencente ao gráfico da função.

Tomando a função quadrática na forma canônica

$$f(x) \,=\, a \left[\left(x \,+\, \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

e considerando que $A\left(\frac{-b}{2a}-r,y\right)$ pertence ao gráfico da função, temos:

$$y = f\left(\frac{-b}{2a} - r\right) = a\left[\left(\frac{-b}{2a} - r + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = a\left[(-r)^2 - \frac{\Delta}{4a^2}\right] = a\left[(r)^2 - \frac{\Delta}{4a^2}\right] = a\left[\left(\frac{-b}{2a} + r + \frac{b}{2a}\right)^2 - \frac{\Delta}{4a^2}\right] = f\left(\frac{-b}{2a} + r\right)$$

provando que $B\left(\frac{-b}{2a} + r, y\right)$ também pertence ao gráfico da função.

X. Informações que auxiliam a construção do gráfico

120. Para fazermos o esboço do gráfico da função quadrática $f(x) = ax^2 + bx + c$, buscaremos, daqui para a frente, informações preliminares, que são:

- 1°) O gráfico é uma parábola, cujo eixo de simetria é a reta $x = \frac{-b}{2a}$ perpendicular ao eixo dos x.
 - 2°) Se a > 0, a parábola tem a concavidade voltada para cima.

Se a < 0, a parábola tem a concavidade voltada para baixo.

3º) Zeros da função.

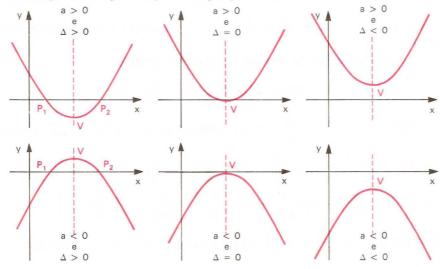
Se $\Delta > 0$, a parábola intercepta o eixo dos x em dois pontos distintos

$$P_1\left(\frac{-b-\sqrt{\Delta}}{2a},\ 0\right)$$
 e $P_2\left(\frac{-b+\sqrt{\Delta}}{2a},\ 0\right)$.

Se $\Delta=0$, a parábola tangencia o eixo dos x no ponto $P\left(\frac{-b}{2a}, 0\right)$. Se $\Delta<0$, a parábola não tem pontos no eixo dos x.

4°) Vértice da parábola é o ponto $V\left(\frac{-b}{2a}, \frac{-\Delta}{4a}\right)$, que é máximo se a < 0 ou é mínimo se a > 0.

Seguem os tipos de gráficos que podemos obter:



EXERCÍCIOS

278. Faça o esboço do gráfico da função $y = x^2 - 4x + 3$.

Solução

Concavidade

Como a = 1 > 0, a parábola tem a concavidade voltada para cima.

Zeros da função

$$x^2 - 4x + 3 = 0 \implies x = 1$$
 ou $x = 3$

Os pontos no eixo x são $P_1(1, 0)$ e $P_2(3, 0)$.

Vértice

Em
$$y = x^2 - 4x + 3$$
, temos

$$a = 1, b = -4, c = 3 e \Delta = 4.$$

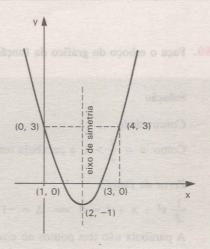
Como
$$\frac{-b}{2a} = \frac{4}{2 \cdot 1} = 2$$
 e $\frac{-\Delta}{4a} = \frac{-4}{4 \cdot 1} = -1$,

o vértice é V(2, -1).

Gráfico

Observe que a parábola sempre intercepta o eixo y. Para determinarmos onde o faz, basta lembrar que o ponto situado no eixo y tem abscissa nula, logo $y(0) = 0^2 - 4 \cdot 0 + 3 = 3$, isto é, o ponto no eixo y é (0, 3).

Determinado o ponto onde a parábola corta o eixo y, podemos determinar um outro ponto (4, 3) da parábola, simétrico a (0, 3) em relação à reta x = 2 (eixo de simetria da parábola).



279. Faça o esboço do gráfico da função $y = -x^2 + 4x - 4$.

Solução

Concavidade

Como a = -1 < 0, a parábola tem a concavidade voltada para baixo.

Zeros da função

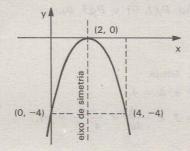
$$-x^2 + 4x - 4 = 0 \implies x = 2$$

A parábola admite um único ponto no eixo x, que é P = (2, 0).

Vértice

Considerando que a parábola admite um único ponto no eixo x, então esse ponto é o vértice da parábola.

Gráfico



280. Faça o esboço do gráfico da função $y = \frac{1}{2}x^2 + x + 1$.

Solução

Concavidade

Como $a = \frac{1}{2} > 0$, a parábola tem a concavidade voltada para cima.

Zeros da função

$$\frac{1}{2} x^2 + x + 1 = 0 \implies \Delta = -1 < 0 \implies \nexists$$
 raízes reais.

A parábola não tem pontos no eixo dos x.

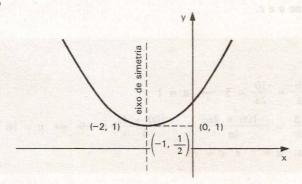
Vértice

Em
$$y = \frac{1}{2}x^2 + x + 1$$
, temos:

$$a = \frac{1}{2}$$
, $b = 1$, $c = 1$ e $\Delta = -1$.

Como
$$\frac{-b}{2a} = \frac{-1}{2 \cdot \frac{1}{2}} = -1$$
 e $\frac{-\Delta}{4a} = \frac{1}{4 \cdot \frac{1}{2}} = \frac{1}{2}$, o vértice é $V\left(-1, \frac{1}{2}\right)$.

Gráfico



281. Construa o gráfico cartesiano das funções definidas em R:

a)
$$y = x^2 - 2x - 3$$

e)
$$y = x^2 - 3x + \frac{9}{4}$$

b)
$$y = 4x^2 - 10x + 4$$

f)
$$y = 3x^2 - 4x + 2$$

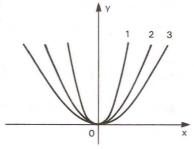
c)
$$y = -x^2 + \frac{1}{2}x + \frac{1}{2}$$

g)
$$y = -x^2 + x - 1$$

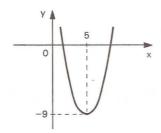
d)
$$y = -3x^2 + 6x - 3$$

h)
$$y = -\frac{1}{2} x^2 - x - \frac{3}{2}$$

282. No gráfico ao lado estão representadas três parábolas, I, 2, 3, de equações, respectivamente, y=ax², y=bx² e y=cx². Qual é a relação entre a, b e c?



283. O gráfico do trinômio do 2º grau $ax^2 - 10x + c$ é o da figura:



Determine a e c.

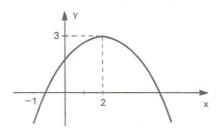
Solução

$$x_v = \frac{-b}{2a} = \frac{10}{2a} = 5 \implies a = 1$$

$$y_v = \frac{-\Delta}{4a} = \frac{-100 + 4ac}{4a} = \frac{-100 + 4c}{4} = -9 \implies c = 16$$

Resposta: a = 1 e c = 16.

284. A figura abaixo é o gráfico de um trinômio do segundo grau.



Determine o trinômio.

Solução

$$x_v = \frac{-b}{2a} = 2 \implies -b = 4a \implies b^2 = 16a^2$$

$$y_v = \frac{-(b^2 - 4ac)}{4a} = 3 \implies -(16a^2 - 4ac) = 12a$$

 $16a - 4c = -12 \implies 4a - c = -3$

Como
$$x_1 + x_2 = \frac{-b}{a} = 4$$
 (já utilizado em (I))

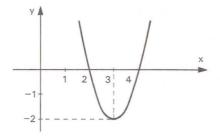
Temos, ainda:
$$x_1 \cdot x_2 = \frac{c}{a} = -5 \implies c = -5a$$

Substituindo (III) em (II), vem:
$$4a + 5a = -3 \implies a = -\frac{1}{3}$$
.

Portanto:
$$b = \frac{4}{3}$$
 e $c = \frac{5}{3}$. $a > (x)1$ (d $a > (x)1$ (a

Então, o trinômio é:
$$y = \frac{-1}{3}x^2 + \frac{4}{3}x + \frac{5}{3}$$
. Idorg seza reviocada

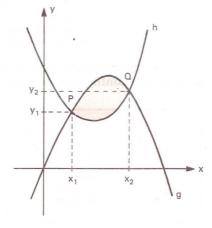
285. Seja $f: \mathbb{R} \to \mathbb{R}$ a função definida por $f(x) = ax^2 + bx + c$, cujo gráfico é dado abaixo, sendo $a, b, c \in \mathbb{R}$. Determine o valor de a.



- **286.** Determine a função g(x) cujo gráfico é o simétrico do gráfico da função $f(x) = 2x x^2$ em relação à reta y = 3. Esboce o gráfico.
- **287.** Os gráficos de duas funções quadráticas $g \in h$ interceptam-se nos pontos $P(x_1; y_1)$ e $Q(x_2; y_2)$, com $x_2 > x_1$, como mostra a figura.

Se $g(x) = ax^2 + bx + c$ e $h(x) = dx^2 + ex + f$, a área da região sombreada, na figura, é dada por $F(x_2) - F(x_1)$, em que $F(x) = \frac{d-a}{3} \cdot x^3 + \frac{e-b}{2} \cdot x^2 + (f-c)x$.

Nessas condições, quanto vale a área da região sombreada, no caso em que $g(x) = x^2 + x e h(x) = -x^2 - x + 4$?



XI. Sinal da função quadrática

121. Consideremos a função quadrática

$$f(x) = ax^2 + bx + c \qquad (a \neq 0)$$

e vamos resolver o problema: "para que valores de $x \in \mathbb{R}$ temos:

a)
$$f(x) > 0$$
;

b)
$$f(x) < 0$$
;

c)
$$f(x) = 0?"$$

Resolver esse problema significa estudar o sinal da função quadrática para cada $x \in \mathbb{R}$.

Na determinação do sinal da função quadrática, devemos começar pelo cálculo do discriminante Δ , quando três casos distintos podem aparecer:

a)
$$\Delta < 0$$

b)
$$\Delta = 0$$

c)
$$\Delta > 0$$

Vejamos como prosseguir em cada caso.

1.º caso:
$$\Delta < 0$$

Se $\Delta < 0$, então $-\Delta > 0$.

Da forma canônica, temos:

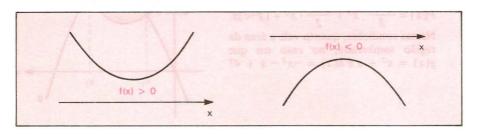
$$a \cdot f(x) = a^2 \left[\left(x + \frac{b}{2a} \right)^2 + \left(\frac{-\Delta}{4a^2} \right) \right] \implies a \cdot f(x) > 0, \ \forall \ x \in \mathbb{R}$$

Isso significa que a função $f(x) = ax^2 + bx + c$, quando $\Delta < 0$, tem o sinal de a para todo $x \in \mathbb{R}$, ou melhor:

$$a > 0 \implies f(x) > 0, \forall x \in \mathbb{R}$$

 $a < 0 \implies f(x) < 0, \forall x \in \mathbb{R}$

A representação gráfica da função $f(x)=ax^2+bx+c$, quando $\Delta<0$, vem confirmar a dedução algébrica.



Exemplos

1°) $f(x) = x^2 - 2x + 2$ apresenta $\Delta = (-2)^2 - 4 \cdot 1 \cdot 2 = -4 < 0$ e, como a = 1 > 0, concluímos que:

$$f(x) > 0, \forall x \in \mathbb{R}$$
.

2°) $f(x) = -x^2 + x - 1$ apresenta $\Delta = 1^2 - 4 \cdot (-1) \cdot (-1) = -3 < 0$ e, como a = -1 < 0, concluímos que:

$$f(x) < 0, \forall x \in \mathbb{R}$$
.

 2° caso: $\Delta = 0$

Da forma canônica, temos:

$$a \cdot f(x) = a^{2} \left[\left(x + \frac{b}{2a} \right)^{2} - \left(\frac{0}{4a^{2}} \right) \right] = a^{2} \left(x + \frac{b}{2a} \right)^{2}$$
positivo (não negativo)

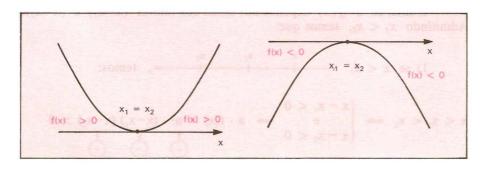
então $a \cdot f(x) \ge 0, \forall x \in \mathbb{R}$.

Isso significa que a função $f(x) = ax^2 + bx + c$, quando $\Delta = 0$, tem o sinal de a para todo $x \in \mathbb{R} - \{x_I\}$, sendo $x_I = \frac{-b}{2a}$ zero duplo de f(x), ou melhor:

$$a > 0 \implies f(x) \ge 0, \forall x \in \mathbb{R}$$

 $a < 0 \implies f(x) \le 0, \forall x \in \mathbb{R}$

A representação gráfica da função $f(x) = ax^2 + bx + c$, quando $\Delta = 0$, vem confirmar a dedução algébrica.



Exemplos

1°) $f(x) = x^2 - 2x + 1$ apresenta $\Delta = (-2)^2 - 4 \cdot 1 \cdot 1 = 0$; então f(x) tem um zero duplo $x_1 = \frac{-b}{2a} = 1$ e, como a = 1 > 0, concluímos:

$$\begin{cases} f(x) > 0, \ \forall x \in |R - \{1\} \\ f(x) = 0 \text{ se } x = 1 \end{cases}$$

2°) $f(x) = -2x^2 + 8x - 8$ apresenta $\Delta = 8^2 - 4(-2) \cdot (-8) = 0$, então f(x) tem um zero duplo para $x_1 = \frac{-b}{2a} = 2$ e, como a = -2 < 0, concluímos:

 $\begin{cases} f(x) < 0, \ \forall x \in |R - \{2\} \\ f(x) = 0 \ \text{se} \ x = 2 \end{cases}$

3.° caso: $\Delta > 0$

Da forma canônica, temos:

$$a\cdot f(x)\,=\,a^2\left[\left(x\,+\,\frac{b}{2a}\right)^2-\left(\frac{\sqrt{\Delta}}{2a}\right)^2\right]\,=\,a^2\left[\left(x\,+\,\frac{b}{2a}\,+\,\frac{\sqrt{\Delta}}{2a}\right)\left(x\,+\,\frac{b}{2a}-\frac{\sqrt{\Delta}}{2a}\right)\right]$$

Lembramos que a fórmula que dá as raízes de uma equação do segundo grau é:

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} \quad \text{isto \'e} \quad \begin{cases} x_1 = \frac{-b - \sqrt{\Delta}}{2a} \\ x_2 = \frac{-b + \sqrt{\Delta}}{2a} \end{cases}$$

fica evidente que a forma canônica se transforma em:

$$af(x) = a^2 \left[\left(x - \frac{-b - \sqrt{\Delta}}{2a} \right) \left(x - \frac{-b + \sqrt{\Delta}}{2a} \right) \right] = a^2(x - x_1) (x - x_2).$$

O sinal de $a \cdot f(x)$ depende dos sinais dos fatores $(x-x_1)$ e $(x-x_2)$. Admitindo $x_1 < x_2$, temos que:

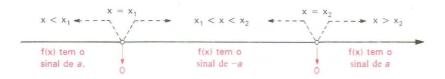
1) se
$$x < x_1$$
 \xrightarrow{x} $\xrightarrow{x_1}$ $\xrightarrow{x_2}$, temos:

$$x < x_1 < x_2 \implies \begin{cases} x - x_1 < 0 \\ e \\ x - x_2 < 0 \end{cases} \implies a \cdot f(x) = a^2 \cdot \underbrace{(x - x_1)}_{\leftarrow} \underbrace{(x - x_2)}_{\leftarrow} > 0$$

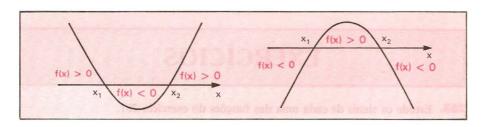
2) se
$$x_{1} < x < x_{2}$$
 $\xrightarrow{x_{1}}$ $\xrightarrow{x_{1}}$ $\xrightarrow{x_{2}}$, temos:
 $x_{1} < x < x_{2}$ \Rightarrow $\begin{cases} x - x_{1} > 0 \\ e \\ x - x_{2} < 0 \end{cases}$ \Rightarrow $a \cdot f(x) = a^{2} \cdot (x - x_{1}) (x - x_{2}) < 0$
3) se $x > x_{2}$ $\xrightarrow{x_{1}}$ $\xrightarrow{x_{2}}$ $\xrightarrow{x_{2}}$, temos:
 $x > x_{2} > x_{1}$ \Rightarrow $\begin{cases} x - x_{1} > 0 \\ e \\ x - x_{2} > 0 \end{cases}$ \Rightarrow $a \cdot f(x) = a^{2} \cdot (x - x_{1}) (x - x_{2}) > 0$

Isso significa que:

- 1) O sinal de f(x) é o sinal de a para todo x, tal que $x < x_1$ ou $x > x_2$;
- 2) O sinal de f(x) é o sinal de -a para todo x, tal que $x_1 < x < x_2$. Em resumo:



O gráfico da função $f(x) = ax^2 + bx + c$, quando $\Delta > 0$, vem confirmar a dedução algébrica.



Exemplos

1°) $f(x) = x^2 - x - 6$ apresenta $\Delta = (-1)^2 - 4 \cdot 1 \cdot (-6) = 25 > 0$; então f(x) tem dois zeros reais e distintos:

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{1 - 5}{2} = -2$$
 e $x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{1 + 5}{2} = 3$

e, como a = 1 > 0, concluímos que:

$$\begin{cases} f(x) > 0 & \text{para} & x < -2 & \text{ou} & x > 3 \\ f(x) = 0 & \text{para} & x = -2 & \text{ou} & x = 3 \\ f(x) < 0 & \text{para} & -2 < x < 3. \end{cases}$$

2°) $f(x) = -2x^2 + 3x + 2$ apresenta $\Delta = 3^2 - 4 \cdot (-2) \cdot 2 = 25$; logo f(x) tem dois zeros reais e distintos:

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-3 + 5}{-4} = -\frac{1}{2}$$
 e $x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-3 - 5}{-4} = 2$

e, como a = -2 < 0, concluímos que:

$$\begin{cases} f(x) < 0 & \text{para} & x < -\frac{1}{2} & \text{ou} & x > 2 \\ f(x) = 0 & \text{para} & x = -\frac{1}{2} & \text{ou} & x = 2 \\ f(x) > 0 & \text{para} & -\frac{1}{2} < x < 2 \end{cases}$$

EXERCÍCIOS

- 288. Estude os sinais de cada uma das funções do exercício 281.
- **289.** Quais as condições de x para que a expressão $ax^2 + bx + c$, em que $b^2 4ac > 0$ e a < 0, seja estritamente positiva?
- **290.** Qual é a condição necessária e suficiente para que o trinômio do 2º grau $f(x) = ax^2 + bx + c$ tenha sinal constante em \mathbb{R} ?

XII. Inequação do 2º grau

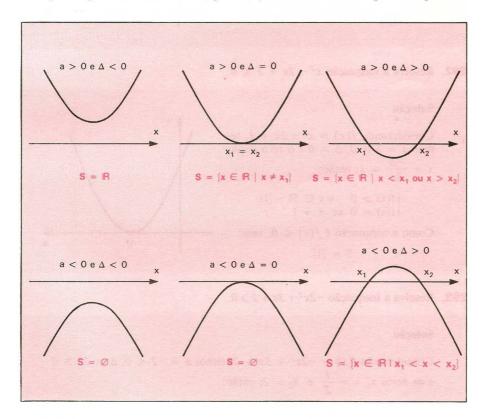
122. Se $a \neq 0$, as inequações $ax^2 + bx + c > 0$, $ax^2 + bx + c < 0$, $ax^2 + bx + c \ge 0$ e $ax^2 + bx + c \le 0$ são denominadas inequações do 2º grau.

Resolver, por exemplo, a inequação

$$ax^2 + bx + c > 0$$

é responder à pergunta: "existe x real tal que $f(x) = ax^2 + bx + c$ seja positiva?"

A resposta a essa pergunta se encontra no estudo do sinal de f(x), que pode, inclusive, ser feito através do gráfico da função. Assim, no nosso exemplo, dependendo de a e de Δ , podemos ter uma das seis respostas seguintes:



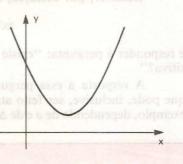
EXERCÍCIOS

291. Resolva a inequação $x^2 - 2x + 2 > 0$.

Solução

Considerando $f(x) = x^2 - 2x + 2$, temos a = 1 > 0 e $\Delta = -4 < 0$; então, f(x) > 0, $\forall x \in \mathbb{R}$.

Como a inequação é f(x) > 0, vem:



292. Resolva a inequação $x^2 - 2x + 1 \le 0$.

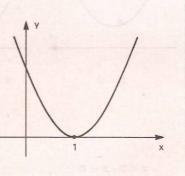
Solução

Considerando $f(x) = x^2 - 2x + 1$, temos a = 1 > 0, $\Delta = 0$ e o zero duplo $x = \frac{-b}{2a} = 1$; então:

$$\begin{cases} f(x) > 0 & \forall x \in |R - \{1\} \\ f(x) = 0 & \text{se } x = 1 \end{cases}$$

Como a inequação é $f(x) \leq 0$, vem:

$$S = \{1\}.$$



293. Resolva a inequação $-2x^2 + 3x + 2 \ge 0$.

Solução

Considerando $f(x) = -2x^2 + 3x + 2$, temos a = -2 < 0, $\Delta = 25 > 0$ e os zeros $x_1 = -\frac{1}{2}$ e $x_2 = 2$; então:

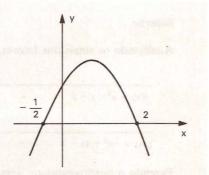
f(x) < 0 para $x < -\frac{1}{2}$ ou x > 2

$$f(x) = 0$$
 para $x = -\frac{1}{2}$ ou $x = 2$

f(x) = 0 para
$$x = -\frac{1}{2}$$
 ou $x = 2$
f(x) > 0 para $-\frac{1}{2} < x < 2$

Como a inequação é $f(x) \ge 0$, vem:

$$S = \left\{ x \in |R| - \frac{1}{2} \leqslant x \leqslant 2 \right\}.$$



294. Resolva as inequações em R:

a)
$$x^2 - 3x + 2 > 0$$

b)
$$-x^2 + x + 6 > 0$$

c)
$$-3x^2 - 8x + 3 \le 0$$

d)
$$-x^2 + \frac{3}{2}x + 10 \ge 0$$

e)
$$8x^2 - 14x + 3 \le 0$$

f)
$$4x^2 - 4x + 1 > 0$$

g)
$$x^2 - 6x + 9 \ge 0$$

h)
$$-4x^2 + 12x - 9 \ge 0$$

i)
$$x^2 + 3x + 7 > 0$$

i)
$$-3x^2 + 3x - 3 < 0$$

k)
$$2x^2 - 4x + 5 < 0$$

1)
$$-\frac{1}{3}x^2 + \frac{1}{2}x - \frac{1}{4} > 0$$

295. Para que valores de x o trinômio $-x^2 + 3x - 4$ é negativo?

296. Se A = $\{x \in |\mathbb{R} \mid x^2 - 3x + 2 \le 0\}$ e B = $\{x \in |\mathbb{R} \mid x^2 - 4x + 3 > 0\}$, determine $A \cap B$.

297. Se A = $\{x \in |R| | 3x - 2x^2 \ge 0\}$, B = $\{x \in |R| | 1 \le x \le 3\}$ e C = $\{x \in |R| | x^2 - x - 2 \le 0\}$, determine $(A \cup B) \cap C$.

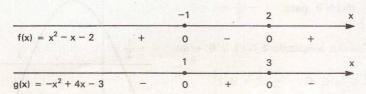
298. Sejam $p(x) = x^2 - 5x + 6$ e $q(x) = x^2 + 5x + 6$. Se a é um número real e p(a) < 0, qual é a condição que deve satisfazer q(a)?

299. Qual é uma condição suficiente para que a expressão $Y = +\sqrt{x^2 - 4}$ represente uma função?

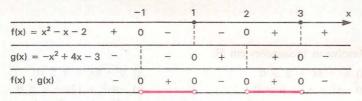
300. Resolva a inequação $(x^2 - x - 2)(-x^2 + 4x - 3) > 0$ em |R.

Solução

Analisando os sinais dos fatores, temos:



Fazendo o quadro-produto, vem:



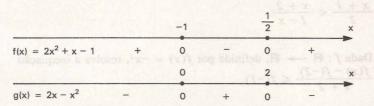
$$S = \{x \in \mathbb{R} \mid -1 < x < 1 \text{ ou } 2 < x < 3\}.$$

- 301. Resolva, em IR, as inequações:
 - a) $(1 4x^2) \cdot (2x^2 + 3x) > 0$
 - b) $(2x^2 7x + 6) \cdot (2x^2 7x + 5) \le 0$
 - c) $(x^2 x 6) \cdot (-x^2 + 2x 1) > 0$
 - d) $(x^2 + x 6) \cdot (-x^2 2x + 3) \ge 0$
 - e) $x^3 2x^2 x + 2 > 0$
 - f) $2x^3 6x^2 + x 3 \le 0$
- **302.** É dada a função $y = (2x^2 9x 5)(x^2 2x + 2)$. Determine:
 - a) os pontos de interseção do gráfico da função com o eixo das abscissas;
 - b) o conjunto dos valores de x para os quais $y \le 0$.
- **303.** Dentre os números inteiros que são soluções da inequação $(x^2 2lx + 20) \cdot (3 x) > 0$, qual é o maior?
- **304.** Determine os valores de $x \in \mathbb{R}$ que satisfazem a inequação $(x^2 2x + 8)(x^2 5x + 6)(x^2 16) < 0$.

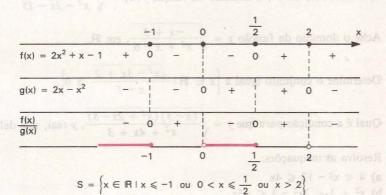
- **305.** Seja A o conjunto solução, em \mathbb{R} , da inequação $(x^2 5x)(x^2 8x + 12) < 0$. Determine A.
- **306.** Resolva a inequação $\frac{2x^2 + x 1}{2x x^2} \le 0$ em IR.

Solução

Analisando os sinais do numerador e do denominador, temos:



Fazendo o quadro-quociente, vem:



307. Resolva, em IR, as inequações:

a)
$$\frac{4x^2 + x - 5}{2x^2 - 3x - 2} > 0$$

b)
$$\frac{-9x^2 + 9x - 2}{3x^2 + 7x + 2} \le 0$$

c)
$$\frac{x^2 + 2x}{x^2 + 5x + 6} \ge 0$$

d)
$$\frac{2-3x}{2x^2+3x-2}$$
 < 0

e)
$$\frac{x^2 + 3x - 16}{-x^2 + 7x - 10} \ge 1$$

f)
$$\frac{2x^2 + 4x + 5}{3x^2 + 7x + 2} < -2$$

g)
$$\frac{6x^2 + 12x + 17}{-2x^2 + 7x - 5} \ge -1$$

h)
$$\frac{(x+1)^3-1}{(x-1)^3+1} > 1$$

308. Determine, em IR, o conjunto solução das inequações:

a)
$$\frac{x+1}{x^2-3x+2} \ge 0$$

$$d) \frac{x}{x+1} - \frac{x}{x-1} \ge 0$$

b)
$$\frac{x}{x^3 - x^2 + x - 1} \ge 0$$

e) t +
$$\frac{1}{t} \leqslant -2$$

c)
$$\frac{x-3}{x-2} \le x-1$$

f)
$$\frac{x^2 + 2x - 1}{x^2 - 1} \ge \frac{1}{x + 1}$$

- **309**. Tomando como conjunto universo o conjunto $U = |R \{I\}$, resolva a inequação $\frac{x+I}{2} < \frac{x+2}{I-x}$.
- **310.** Dada $f: \mathbb{R} \longrightarrow \mathbb{R}$, definida por $f(x) = -x^2$, resolva a inequação $\frac{f(x) f(-2)}{x + 2} \leqslant f(-1).$
- **311.** a) O que se pretende dizer quando se pede para achar o domínio de uma f(x) igualada a uma expressão em x?
 - b) Determine, em IR, o domínio da função $f(x) = \sqrt{\frac{-x^2 + 1}{x^2 2x 15}}$.
- **312.** Ache o domínio da função $y = \sqrt{\frac{-x+5}{x^2+x-6}}$, em IR.
- **313.** Determine o conjunto igual a $\left\{x \in \mathbb{R} \mid \frac{\sqrt{x^2 3x + 2}}{x 1} \geqslant 0\right\}$.
- **314.** Qual é a condição para que $y = \sqrt{\frac{(x-3)(x^2+2x-8)}{x^2+4x+3}}$, y real, seja definida?
- 315. Resolva as inequações:

a)
$$4 < x^2 - 12 \le 4x$$

b)
$$x^2 + 1 < 2x^2 - 3 \le -5x$$

c)
$$0 \le x^2 - 3x + 2 \le 6$$

d)
$$7x + 1 < x^2 + 3x - 4 \le 2x + 2$$

e)
$$0 < x^2 + x + 1 < 1$$

f)
$$4x^2 - 5x + 4 < 3x^2 - 6x + 6 < x^2 + 3x - 4$$

316. Resolva os sistemas de inequações:

a)
$$\begin{cases} x^2 + x - 2 > 0 \\ 3x - x^2 < 0 \end{cases}$$

c)
$$\begin{cases} 1 + 2x \ge 0 \\ -4x^2 + 8x - 3 < 0 \end{cases}$$

b)
$$\begin{cases} x^2 + x - 20 \le 0 \\ x^2 - 4x - 21 > 0 \end{cases}$$

d)
$$\begin{cases} -2x^2 - x + 1 \ge 0 \\ 4x^2 - 8x + 3 \le 0 \end{cases}$$

317. Considere as desigualdades:

$$4y + 3x \leqslant 12, \quad 0 \leqslant x, \quad 0 \leqslant y.$$

Classifique as proposições abaixo em verdadeiras ou falsas:

- a) O conjunto de soluções das desigualdades é limitado no plano (x, y).
- b) O valor máximo da variável x satisfazendo as desigualdades é 4.
- c) O conjunto de soluções das desigualdades não é limitado no plano (x, y).
- d) O valor mínimo da variável y satisfazendo as desigualdades é 3.
- e) O valor máximo da variável y satisfazendo as desigualdades é 3.
- 318. Assinale as proposições verdadeiras e as proposições falsas nos itens abaixo. O conjunto solução do sistema

$$\begin{cases} x^2 - 1 > 0 \\ x^2 - 2x < 0 \end{cases}$$
 é

- a) $\{x \in |R| 1 < x < 1\}$
- b) $\{x \in |R| 1 < x \le 0\} \cup \{0 < x < 1\}$
- c) $\{x \in |R| |x < -1\} \cup \{x \in |R| |x > 2\}$
- d) $\left\{x \in |\mathbb{R} \mid 1 < x \leqslant \frac{3}{2}\right\} \cup \left\{x \in |\mathbb{R} \mid \frac{3}{2} < x < 2\right\}$
- e) $\{x \in |R| | 1 < x < 2\}$
- 319. Resolva a inequação $x^4 5x^2 + 4 \ge 0$, em |R.

Solução

Fazendo $z = x^2$, temos

$$z^2 - 5z + 4 \geqslant 0 \implies z \leqslant 1$$
 ou $z \geqslant 4$

mas $z = x^2$; portanto:

$$(x^2 \le 1 \quad \text{ou} \quad x^2 \ge 4) \implies (x^2 - 1 \le 0 \quad \text{ou} \quad x^2 - 4 \ge 0) \implies$$

 $\implies (-1 \le x \le 1 \quad \text{ou} \quad x \le -2 \quad \text{ou} \quad x \ge 2)$

logo
$$S = \{x \in \mathbb{R} \mid x \le -2 \text{ ou } -1 \le x \le 1 \text{ ou } x \ge 2\}.$$

320. Resolva, em IR, as inequações:

a)
$$x^4 - 10x^2 + 9 \le 0$$

b)
$$x^4 - 3x^2 - 4 > 0$$

c)
$$x^4 + 8x^2 - 9 < 0$$

d)
$$2x^4 - 3x^2 + 4 < 0$$

e)
$$x^6 - 7x^3 - 8 \ge 0$$

f)
$$3x^4 - 5x^2 + 4 > 0$$

321. Determine m de modo que a função quadrática $f(x) = mx^2 + (2m - 1)x + (m + 1)$ seja positiva para todo x real.

Solução

Devemos ter simultaneamente $\Delta < 0$ e a > 0; portanto:

1°)
$$\Delta = b^2 - 4ac = (2m-1)^2 - 4 \cdot m \cdot (m+1) = = 4m^2 - 4m + 1 - 4m^2 - 4m = -8m + 1 < 0 \implies m > \frac{1}{8}$$

2°)
$$a=m>0 \implies m>0$$
 as a restablished exception of an element A

Como as condições são simultâneas, concluímos que:

$$(f(x) > 0, \forall x \in \mathbb{R}) \iff m > \frac{1}{8}.$$

322. Determine m para que se tenha para $\forall x \in \mathbb{R}$:

a)
$$x^2 + (2m-1)x + (m^2-2) > 0$$

f)
$$(m-1)x^2 + 4(m-1)x + m > 0$$

b)
$$x^2 + (2m + 3)x + (m^2 + 3) \ge 0$$

g)
$$mx^2 + (m-2)x + m \le 0$$

c)
$$x^2 - mx + m > 0$$

h)
$$mx^2 + (m + 3)x + m \ge 0$$

d)
$$x^2 + (m+1)x + m > 0$$

i)
$$(m+1)x^2-2(m-1)x+3(m-1)<0$$

e)
$$-x^2 + (m+2)x - (m+3) \ge 0$$

j)
$$(m^2-1)x^2 + 2(m-1)x + 1 > 0$$

323. Determine m para que se tenha $\frac{x^2 + (m+1)x + 1}{x^2 + x + 1} < 2 \text{ para } \forall x \in \mathbb{R}.$

Solução

Considerando que $x^2 + x + 1$ é positivo para qualquer x real, multiplicamos ambos os membros de $\frac{x^2 + (m+1)x + 1}{x^2 + x + 1} < 2$ por $(x^2 + x + 1)$, mantendo a desigualdade.

Então:

$$\frac{x^2 + (m+1)x + 1}{x^2 + x + 1} < 2, \forall x \in \mathbb{R} \iff$$

$$\Leftrightarrow$$
 $x^2 + (m + 1)x + 1 < 2(x^2 + x + 1), \forall x \in \mathbb{R} \Leftrightarrow$

$$\Leftrightarrow -x^2 + (m-1)x - 1 < 0, \forall x \in \mathbb{R}.$$

Devemos ter $\Delta < 0$, portanto:

$$\Delta = (m-1)^2 - 4 \cdot (-1) \cdot (-1) = m^2 - 2m - 3 < 0 \iff -1 < m < 3.$$

Resposta: -1 < m < 3.

324. Determine m para que se tenha para $\forall x \in \mathbb{R}$:

a)
$$\frac{x^2 + mx + 1}{x^2 + 1} < 2$$

b)
$$\frac{x^2 - mx + 2}{x^2 - x + 2} > m$$

c)
$$\frac{x}{x^2 + 4} > \frac{x + m}{x^2 + 1}$$

d)
$$-3 < \frac{x^2 + mx - 2}{x^2 - x + 1} < 2$$

- **325.** Qual é o conjunto de valores de p para os quais a inequação $x^2 + 2x + p > 10$ é verdadeira para qualquer x pertencente a \mathbb{R} ?
- **326.** Qual é a condição para que a desigualdade $x^2 2(m + 2)x + m + 2 > 0$ seja verificada para todo número real x?
- **327.** Se $\frac{x-a}{x^2+1} < \frac{x+a}{x^2}$, para todo $x \neq 0$, qual é a condição que a satisfaz?
- 328. Determine os valores de $m \in \mathbb{R}$ para os quais o domínio da função $f(x) = \frac{1}{\sqrt{2x^2 mx + m}}$ é o conjunto dos reais.
- **329.** Para que a função real $f(x) = \sqrt{x^2 6x + k}$, em que x e k são reais, seja definida para qualquer valor de x, qual deve ser o valor de k?

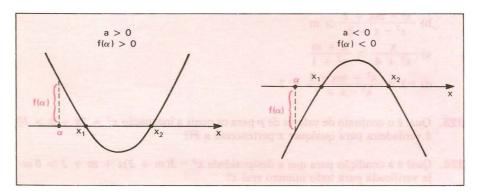
XIII. Comparação de um número real com as raízes da equação do 2º grau

- **123.** Comparar o número real α às raízes reais $x_1 \le x_2$ da equação do 2°. grau $ax^2 + bx + c = 0$ é verificar se:
- 1) α está à esquerda de x_1 ($\alpha < x_1 \le x_2$)
- 2) α está entre as raízes $(x_1 < \alpha < x_2)$
- 3) α está à direita de x_2 ($x_1 \leqslant x_2 < \alpha$)
- 4) α é uma das raízes ($\alpha = x_1$ ou $\alpha = x_2$)

sem calcular as raízes.

Sendo $f(x) = ax^2 + bx + c$ uma função quadrática, cuja regra de sinal já discutimos neste capítulo, temos que:

a) se α estiver à esquerda de x_1 ou à direita de x_2 , o produto $a \cdot f(\alpha)$ é positivo, isto é: a (coeficiente de x^2) e $f(\alpha) = a\alpha^2 + b\alpha + c$ têm o mesmo sinal.



b) se α estiver entre as raízes x_1 e x_2 ($x_1 \neq x_2$), o produto $a \cdot f(\alpha)$ é negativo, isto é: a e $f(\alpha)$ têm sinais contrários.



c) se α é zero de f(x), então $a \cdot f(\alpha) = 0$, pois $f(\alpha) = 0$.

Resumo

Conhecendo a posição de α em relação às raízes reais x_1 e x_2 de f(x) = 0, temos que:

- 1) $\alpha < x_1 \leqslant x_2 \implies a \cdot f(\alpha) > 0$
- 2) $x_1 < \alpha < x_2 \implies a \cdot f(\alpha) < 0$
- 3) $x_1 \leqslant x_2 < \alpha \implies a \cdot f(\alpha) > 0$
- 4) $\alpha = x_1$ ou $\alpha = x_2 \implies a \cdot f(\alpha) = 0$

Observemos que nos casos 1, 3 e 4 o discriminante é $\Delta \geqslant 0$ enquanto no caso 2 temos $\Delta > 0$.

Inversamente, conhecendo o sinal do produto $a \cdot f(\alpha)$, que conclusão podemos tirar da *existência de raízes reais* da equação f(x) = 0 e qual a *posição de* α em relação às mesmas raízes?

É o que veremos em seguida.

124. Teorema 1

Se $a \cdot f(\alpha) < 0$, o trinômio $f(x) = ax^2 + bx + c$ tem zeros reais e distintos e α está compreendido entre eles.

$$H(a \cdot f(\alpha) < 0)$$
 $T(\Delta > 0 \quad e \quad x_1 < \alpha < x_2)$

Demonstração

1°) Se fosse $\Delta \le 0$, teríamos: $a \cdot f(\alpha) \ge 0$, $\forall \alpha, \alpha \in \mathbb{R}$, o que é absurdo, pois contraria a hipótese $a \cdot f(\alpha) < 0$.

Concluímos, então, que $\Delta > 0$, isto é, f(x) tem dois zeros x_1 e x_2 , reais e distintos.

2°.) Se o real α estiver à esquerda de x_1 ou à direita de x_2 ou for um zero de f(x), teremos $a \cdot f(\alpha) \ge 0$, o que contraria a hipótese $a \cdot f(\alpha) < 0$.

Concluímos, então, que α está compreendido entre x_1 e x_2 .

Exemplo

Comparar o número l às raízes da equação $3x^2 - 5x + 1 = 0$.

Temos
$$a = 3$$
, $\alpha = 1$ e $f(x) = 3x^2 - 5x + 1$; então:
a · f(α) = 3 · f(1) = 3 · (3 · 1² - 5 · 1 + 1) = -3 < 0.

Conclusão: $\Delta > 0$ e $x_1 < 1 < x_2$.

125. Teorema 2

Se $a \cdot f(\alpha) > 0$ e $\Delta \ge 0$, então α está à esquerda de x_i ou à direita de x_2 .

Demonstração

Se $\Delta > 0$ e $x_1 \le \alpha \le x_2$, então $a \cdot f(\alpha) \le 0$, o que contradiz a hipótese $a \cdot f(\alpha) > 0$.

Se $\Delta=0$ e $\alpha=x_1=x_2$, então $a\cdot f(\alpha)=0$, o que também contradiz a hipótese $a\cdot f(\alpha)>0$.

Concluímos que $\alpha < x_1 \le x_2$ ou $x_1 \le x_2 < \alpha$.

Observação

Notemos que, se $a \cdot f(\alpha) > 0$ e $\Delta \geqslant 0$, o teorema 2 garante que $\alpha \notin [x_1, x_2]$, mas não indica se α está à esquerda desse intervalo $(\alpha < x_1 \leqslant x_2)$ ou à direita dele $(x_1 \leqslant x_2 < \alpha)$. Para verificarmos qual dessas duas situações está ocorrendo, devemos comparar α com um número qualquer que esteja entre as raízes. Para facilitar os cálculos vamos utilizar o número $\frac{S}{2} = \frac{x_1 + x_2}{2} = \frac{-b}{2a}$, que é a média aritmética das raízes x_1 e x_2 , pois:

$$x_1 \leqslant x_2 \implies x_1 \leqslant \frac{x_1 + x_2}{2} \leqslant x_2 \implies x_1 \leqslant \frac{S}{2} \leqslant x_2.$$

Calculando $\frac{S}{2} = \frac{-b}{2a}$, temos duas possibilidades a examinar:

1ª) se $\alpha < \frac{S}{2}$, então α está à esquerda de $\frac{S}{2}$ e, conseqüentemente, à esquerda de x_1 :

$$\alpha < \frac{S}{2} \implies \alpha < x_1 \leqslant x_2 \qquad \frac{x_1}{\alpha} \qquad \frac{x_2}{S} \qquad x$$

2ª) se $\alpha > \frac{S}{2}$, então α está à direita de $\frac{S}{2}$ e, consequentemente, à direita de x_2 :

$$\alpha > \frac{S}{2} \implies x_1 \leqslant x_2 < \alpha$$
 $x_1 \qquad x_2 \qquad x_3 \qquad x_4 \qquad x_4 \qquad x_5 \qquad x_6 \qquad x_8 \qquad x_8 \qquad x_8 \qquad x_9 \qquad x_9$

Exemplos

1º) Comparar o número I às raízes da equação $3x^2 + 4x - 3 = 0$.

$$\Delta = 4^{2} - 4 \cdot 3 \cdot (-3) = 52 > 0$$

$$a \cdot f(\alpha) = 3 \cdot f(1) = 3 \cdot (3 + 4 - 3) = 12 > 0$$

$$\frac{S}{2} = \frac{-b}{2a} = \frac{-2}{3} < 1 = \alpha$$

$$\Rightarrow x_{1} < x_{2} < 1$$

2º) Comparar o número 0 às raízes da equação $4x^2 - 6x + 1 = 0$.

$$\Delta = (-6)^{2} - 4 \cdot 4 \cdot 1 = 20 > 0$$

$$a \cdot f(\alpha) = 4 \cdot f(0) = 4 \cdot 1 = 4 > 0$$

$$\frac{S}{2} = \frac{-b}{2a} = \frac{3}{4} > 0$$

$$\Rightarrow 0 < x_{1} < x_{2}$$

126. Resumo

Se $f(x) = ax^2 + bx + c$ apresenta zeros reais $x_1 \le x_2$ e α é um número real que vai ser comparado a x_1 e x_2 , temos:

a)
$$a \cdot f(\alpha) < 0 \xrightarrow{T-1} x_1 < \alpha < x_2$$

b) a
$$\cdot$$
 f(α) = 0 \Longrightarrow α é uma das raízes

c)
$$a \cdot f(\alpha) > 0$$
 e $\Delta \geqslant 0 \implies \begin{cases} \alpha < x_1 \leqslant x_2 \text{ se } \alpha < \frac{S}{2} \\ x_1 \leqslant x_2 < \alpha \text{ se } \alpha > \frac{S}{2} \end{cases}$

EXERCÍCIOS

330. Determine m de modo que o número l esteja compreendido entre as raízes da equação: $mx^2 + (m-l)x - m = 0$.

Solução

Consideremos $f(x) = mx^2 + (m-1)x - m$.

Para que aconteça $x_1 < 1 < x_2$, em que x_1 e x_2 são as raízes de $mx^2 + (m-1)x - m = 0$, devemos ter:

$$af(1) < 0 \implies \underbrace{m \left[m \cdot 1^2 + (m-1) \cdot 1 - m\right]}_{a} < 0$$

$$\Rightarrow$$
 m · (m - 1) < 0 \Rightarrow 0 < m < 1

Resposta: 0 < m < 1.

- **331.** Determine m de modo que o número α esteja compreendido entre as raízes da equação:
 - a) $mx^2 + (2m 3)x + m 1 = 0$ e $\alpha = 2$
 - b) $(m-1)x^2 + (2m+1)x + m = 0$ e $\alpha = -1$
 - c) $mx^2 + (m-1)x + (m+2) = 0$ e $\alpha = 0$
 - d) $(m^2-1)x^2 + (m-3)x + m + 1 = 0$ e $\alpha = 1$
- **332.** Determine os valores de m na equação $x^2 + (m-2)x + 1 m = 0$ de modo que o número real 2 esteja compreendido entre as raízes.
- **333.** Determine m para que a equação: $(m-2)x^2 3mx + (m+2) = 0$ tenha uma raiz positiva e outra negativa.
- **334.** Determine o menor valor inteiro de k para que a equação $2x^2 + kx + k 5 = 0$ tenha duas raízes de sinais contrários, sendo a negativa a de maior valor absoluto.
- **335.** Determine m de modo que a equação $mx^2 (2m+1)x + 2 + m = 0$ tenha raízes reais tais que $-1 < x_1 < x_2$.

Solução

Consideremos $f(x) = mx^2 - (2m+1)x + 2 + m$.

Para que aconteça $-1 < x_1 < x_2$, em que x_1 e x_2 são as raízes reais de $mx^2 - (2m + 1)x + 2 + m = 0$, devemos ter:

$$a \cdot f(-1) > 0$$
, $\Delta > 0$ e $\frac{S}{2} > -1$.

Analisando separadamente cada condição:

$$1^{a}$$
) $a \cdot f(-1) > 0 \implies \underbrace{m \cdot [m(-1)^{2} - (2m+1) \cdot (-1) + 2 + m]}_{a} > 0 \implies \underbrace{f(-1)}_{3}$

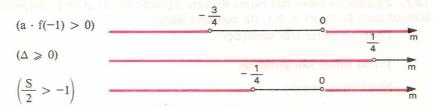
$$\implies m\cdot (4m+3)>0 \implies m<-\frac{3}{4} \ ou \ m>0.$$

$$2^{a}) \Delta \geqslant 0 \implies (2m+1)^{2}-4 \cdot m(2+m) \geqslant 0 \implies -4m+1>0 \implies m \leqslant \frac{1}{4}.$$

$$3^{a}) \frac{S}{2} > -1 \implies \frac{2m+1}{2m} > -1 \implies \frac{2m+1}{2m} + 1 > 0 \implies \frac{4m+1}{2m} > 0 \implies$$

$$\implies m < -\frac{1}{4} \text{ ou } m > 0.$$

Representando os valores encontrados sobre um eixo:



Como as três condições são simultâneas, fazendo a interseção dos intervalos acima vamos encontrar:

$$m < -\frac{3}{4}$$
 ou $0 < m \le \frac{1}{4}$, que é a resposta.

- **336.** Determine m de modo que a equação $(m-3)x^2 + 2(m-2)x + m + 1 = 0$ tenha raízes reais tais que $x_1 < x_2 < 1$.
- **337.** Determine m de modo que a equação $(m-1)x^2 mx 2m 2 = 0$ tenha raízes reais tais que $-1 < x_1 < x_2$.
- 338. Determine m de modo que a equação do 2º grau $mx^2 2(m+1)x + m + 5 = 0$ tenha raízes reais tais que $0 < x_1 < x_2 < 2$.
- 339. Determine m para que a equação do 2º grau $mx^2 2(m+1)x + m + 5 = 0$ tenha raízes reais tais que $x_1 < 0 < x_2 < 2$.
- **340**. Determine m para que a equação do 2º grau $3x^2 2(m+2)x + m^2 6m + 8 = 0$ tenha raízes reais tais que $x_1 < I < x_2 < 4$.
- **341**. Determine m para que a equação do 2º grau $(2m + 1)x^2 + 2x + m + 1 = 0$ tenha raízes reais tais que $0 < x_1 < x_2 < 4$.
- **342.** Determine m na equação do 2º grau $(3m-2)x^2 + 2mx + 3m = 0$ para que tenha uma única raiz entre -1 e 0.
- **343.** Determine m na equação do 2º grau $mx^2 2(m-1)x m 1 = 0$ para que se tenha uma única raiz entre -1 e 2.

XIV. Sinais das raízes da equação do 2º grau

127. Estudar os sinais das raízes de uma equação do 2º grau é comparar o número zero às raízes x_1 e x_2 da equação dada.

Podem ocorrer três situações:

1ª) as raízes são positivas

Neste caso, temos:

De acordo com a teoria anterior, temos:

$$\Delta \geqslant 0$$
 e $a \cdot f(0) > 0$ e $\frac{S}{2} > 0$.

Notemos que, sendo $f(x) = ax^2 + bx + c$, temos:

a)
$$a \cdot f(0) = a \cdot c > 0 \implies \frac{c}{a} > 0 \implies P > 0$$

em que $P = \frac{c}{a}$ é o produto das raízes da equação do 2º grau.

b)
$$\frac{S}{2} > 0 \implies S > 0$$

em que $S = -\frac{b}{a}$ é a soma das raízes da equação do 2º grau.

Assim sendo, uma equação do 2º grau tem raízes positivas somente se:

$$\Delta \geqslant 0$$
 e P > 0 e S > 0

isto é, se as raízes forem reais, com produto positivo e soma positiva.

2ª) as raizes são negativas

Neste caso, temos:

$$x_1 < x_2 < 0$$
 $x_1 = x_2 < 0$ $x_1 = x_2$ $x_2 = 0$

De acordo com a teoria anterior, temos:

$$\Delta \geqslant 0$$
 e $a \cdot f(0) > 0$ e $\frac{S}{2} < 0$.

Isso também pode ser escrito assim:

$$\Delta \geqslant 0$$
 e $P > 0$ e $S < 0$.

3ª) as raízes têm sinais contrários

Neste caso, temos:

$$x_1 < 0 < x_2$$
.

De acordo com a teoria anterior, temos:

$$a \cdot f(0) < 0$$
 ou $P < 0$.

128. Aplicação

Determinar os valores de m na equação do 2º grau

$$(m-1)x^2 + (2m + 1)x + m = 0$$

para que as raízes reais sejam distintas e positivas.

Como a equação é do 2º grau, devemos ter, inicialmente,

$$m-1 \neq 0 \implies m \neq 1$$

e, se as raízes são distintas e positivas ($0 < x_1 < x_2$), então:

 $\Delta > 0$ (pelo fato de as raízes serem reais e distintas) e S > 0 e P > 0 (pelo fato de as raízes serem positivas).

Analisando cada condição:

$$\Delta = (2m + 1)^{2} - 4(m - 1) \cdot m =
= 8m + 1 > 0 \implies m > -\frac{1}{8}$$

$$S = \frac{-b}{a} = \frac{-(2m + 1)}{m - 1} > 0 \implies s > 0 \xrightarrow{\frac{1}{2}}$$

$$\implies -\frac{1}{2} < m < 1$$

$$P = \frac{c}{a} = \frac{m}{a} > 0 \implies P > 0$$

$$P = \frac{c}{a} = \frac{m}{m-1} > 0 \implies P > 0$$

$$\implies 0 < m < 1$$

Fazendo a interseção das três condições, vem 0 < m < 1, que é a resposta.

EXERCÍCIOS

- **344.** Determine m de modo que a equação do 2º grau $(m+1)x^2 + 2(m+1)x + m-1 = 0$ tenha raízes negativas.
- **345.** Determine m de modo que a equação do 2º grau $(m+1)x^2 + 2x + m 1 = 0$ tenha raízes positivas.
- **346.** Determine m de modo que a equação do 2º grau $(m-2)x^2 + (3m-1)x + (m+1) = 0$ tenha raízes de sinais contrários.
- **347.** Determine m de modo que a equação do 2º grau $(m-1)x^2 + (2m+3)x + m = 0$ admita raízes negativas.
- **348.** Determine m de modo que a equação do 2º grau $(m^2-4)x^2 + mx + m-3 = 0$ admita raízes de sinais contrários.
- **349.** Determine m de modo que a equação do 2º grau $mx^2 (2m-1)x + (m-2) = 0$ admita raízes positivas.
- **350.** Determine o menor valor inteiro de k para que a equação $2x^2 + kx + k 5 = 0$ tenha duas raízes de sinais contrários, sendo a negativa a de maior valor absoluto.
- **351.** Considere o conjunto $A = \{y \in Z \text{ tal que } |y| < 4\}$. Responda:
 - a) Qual o número de equações do tipo $x^2 + 2mx + n = 0$, com $m \in A$ e $n \in A$?
 - b) Dentre as equações obtidas no item a, quantas têm raízes reais e distintas?
 - c) Dentre as equações com raízes reais e distintas, quantas têm raízes positivas?
- **352.** A equação $(m^2 + 1)x 2m + 5 = 0$ admite raiz negativa para qual condição sobre m?
- **353.** Sejam p e q reais; se a equação do segundo grau em x:

$$x^2 + p^2x + q^2 + 1 = 0$$

tem duas raízes reais, x_1 e x_2 , qual é o sinal dessas raízes?

LEITURA

Dedekind e os Números Reais

Hygino H. Domingues

A escola pitagórica provou que $\sqrt{2}$ não é um número racional. Mas nem por isso descobriu os números irracionais. E como os gregos de então, ao contrário de babilônios e egípcios, não eram de se contentar com aproximações, desprovidas de significado teórico, enveredaram pela geometria para superar esse impasse (ver pág. 62). Assim, os gregos do período clássico, ao resolverem a equação $x^2 = 2$, por exemplo, faziam-no geometricamente, fornecendo a raiz positiva como um segmento de reta. E se hoje dizemos "x ao quadrado" para indicar x^2 , isso se deve a que os gregos associavam um produto de fatores iguais à figura de um quadrado. Coisa análoga vale para x^3 .

Mas a ciência aplicada não pode prescindir da matemática numérica. De modo que já no período alexandrino, quando a matemática grega se abriu para as aplicações, não lhe restou senão imitar a atitude de egípcios e babilônios com relação aos números irracionais — pois ainda demoraria muito até que a natureza destes fosse decifrada.

Assim é que até a primeira metade do século XIX o conceito de número irracional não havia ainda sido elucidado e o conjunto dos números reais carecia de fundamentação lógica. A substituição da intuição geométrica pelos números, como base da análise matemática, foi a grande motivação, no século XIX, para as tentativas de pôr em pratos limpos a questão dos números reais. E entre os matemáticos com papel decisivo nessa empreitada figura Richard Dedekind (1831-1916).

Dedekind nasceu na Alemanha, em Brunswick, também cidade natal de Gauss. Mas, ao contrário deste, seu extraordinário gênio matemático não aflorou precocemente. Na Universidade de Göttingen,

Richard Dedekind (1831-1916).

em que ingressou aos 19 anos de idade, Dedekind iria ter a oportunidade de ser aluno de seu conterrâneo. E o mesmo Gauss, em 1852, teve ocasião de dar parecer favorável à tese de doutoramento de Dedekind.

Depois de trabalhar quatro anos em Göttingen como instrutor e seis anos como professor na Escola Politécnica de Zurique, Dedekind foi contratado pela Escola Técnica Superior de sua cidade natal, onde permaneceu até a morte.

São inúmeras as contribuições de Dedekind à Matemática. Mas seu nome provavelmente é mais lembrado por dois importantes conceitos: o de *ideal*, um dos mais fecundos hoje em dia em todos os campos da matemática; e o de *corte*, através do qual caracterizou, num livro de 1872, os números reais.

Como professor de cálculo, já a partir de 1858, sentiu mais diretamente a falta de um embasamento teórico para o sistema dos números reais. Exemplificava dizendo não haver uma demonstração sequer para coisas corriqueiras como $\sqrt{2} \cdot \sqrt{3} = \sqrt{6}$. E a questão central era como esclarecer a idéia de *continuidade*.

Depois de meditar muito, não sem buscar inspiração em Eudóxio, Dedekind abraçou a idéia de que se poderia chegar ao conceito de continuidade através de convenientes partições em $\mathbb Q$. E definiu um corte em $\mathbb Q$ como uma partição deste conjunto num par (A, B) de subconjuntos não vazios tais que todo elemento do primeiro é menor que todo elemento do segundo. Por exemplo, para cada $a \in \mathbb Q$ está associado o *corte racional* (A, B) definido por a, em que $A = \{x \in \mathbb Q \mid x \le a\}$ e $B = \{x \in \mathbb Q \mid x > a\}$. Mas não vale a recíproca: há cortes não racionais.

Dedekind mostrou como operar com esses cortes e como compará-los. Desse modo cada corte passa a representar formalmente um número real e o conjunto desses cortes pode ser visto como o conjunto dos números reais. Por exemplo, o corte (A, B) do exemplo representa o número racional a; os cortes não racionais são os números irracionais da teoria de Dedekind.

Os mais de 2 000 anos decorridos desde o início até o fim desta história dão bem uma idéia da magnitude do passo dado por Dedekind.

Função Modular

I. Função definida por várias sentenças abertas

Uma função f pode ser definida por várias sentenças abertas, cada uma das quais está ligada a um domínio D_i contido no domínio da f.

129. Exemplos preliminares

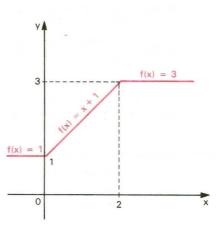
1º) Seja a função $f \colon |\mathbb{R} \to \mathbb{R}$ definida por

$$\begin{cases} f(x) = 1 \text{ para } x < 0 \\ f(x) = x + 1 \text{ para } 0 \le x < 2 \\ f(x) = 3 \text{ para } x \ge 2 \end{cases}$$

que também pode ser indicada por

$$f(x) \, = \, \begin{cases} 1 & \text{se} \quad x \, < \, 0 \\ x \, + \, 1 & \text{se} \quad 0 \, \leqslant \, x \, < \, 2 \\ 3 & \text{se} \quad x \, \geqslant \, 2 \end{cases}$$

O seu gráfico está representado ao lado.



2°) Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por

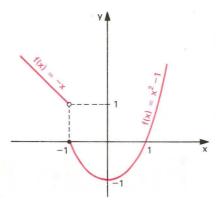
$$f(x) = -x para x < -1$$

$$f(x) = x^2 - 1$$
 para $x \ge -1$

que também pode ser indicada por

$$f(x) = \begin{cases} -x & \text{se } x < -1 \\ x^2 - 1 & \text{se } x \geqslant 1 \end{cases}$$

O seu gráfico está representado ao lado.



EXERCÍCIOS

354. Construa o gráfico das funções definidas em IR:

a)
$$f(x) = \begin{cases} x + 1 & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

e)
$$f(x) = \begin{cases} x^2 - 2x & \text{se } x \ge 0 \\ 1 - x & \text{se } x < 0 \end{cases}$$

b)
$$f(x) = \begin{cases} -2x + 3 & \text{se } x \ge 1 \\ 1 & \text{se } -1 < x < 1 \\ 2 + x & \text{se } x \le -1 \end{cases}$$

f)
$$f(x) = \begin{cases} -x^2 + 1 & \text{se } x > -2 \\ 1 & \text{se } x \le -2 \end{cases}$$

c)
$$f(x) = \begin{cases} -2 & \text{se } x \leq -2 \\ x & \text{se } -2 < x < 2 \\ 2 & \text{se } x \geqslant 2 \end{cases}$$

g)
$$f(x) = \begin{cases} x^2 - 4x & \text{se } x \ge 0 \\ -x^2 - 4x & \text{se } x < 0 \end{cases}$$

d)
$$f(x) = \begin{cases} x^2 - 4x + 3 & \text{se } x \ge 1 \\ x - 1 & \text{se } x < 1 \end{cases}$$
 h) $f(x) = \begin{cases} x^2 - 4x + 3 & \text{se } x \ge 0 \\ x^2 + 4x + 3 & \text{se } x < 0 \end{cases}$

h)
$$f(x) = \begin{cases} x^2 - 4x + 3 & \text{se } x \ge 0 \\ x^2 + 4x + 3 & \text{se } x < 0 \end{cases}$$

355. Esboce o gráfico da função:

$$f(x) = \begin{cases} x^{-1} & \text{se } x \geqslant 2 \\ x^2 - 1 & \text{se } 0 \leqslant x < 2 \\ |x| & \text{se } x < 0 \end{cases}$$

356. Construa o gráfico da função real dada por:

a)
$$f(x) = \begin{cases} 0 & \text{se } x \le 0 \\ \frac{x}{2} & \text{se } 0 < x \le 2 \\ 1 & \text{se } x > 2 \end{cases}$$
 b) $f(x) = \begin{cases} -x & \text{se } x \le 0 \\ x^2 & \text{se } x > 0 \end{cases}$

b)
$$f(x) = \begin{cases} -x & \text{se } x \leq 0 \\ x^2 & \text{se } x > 0 \end{cases}$$

357. Na função real $f(x) = \begin{cases} x^2 + x - 2 & \text{se } x > -2 \\ -\frac{x}{2} + I & \text{se } x \leq -2 \end{cases}$, determine os valores do domínio que têm imagem 4.

Solução

Para determinarmos o valor de $x \in \mathbb{R}$ tal que f(x) = 4, resolvemos as equações

$$x^2 + x - 2 = 4 \implies x^2 + x - 6 = 0 \implies \begin{cases} x = -3 \\ x = 2 \end{cases}$$
 (não convém)

e

$$-\frac{x}{2} + 1 = 4 \implies x = -6$$

logo, os valores do domínio são x = 2 ou x = -6.

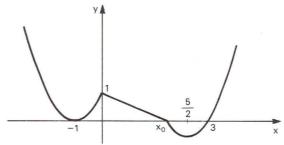
- **358.** Na função real $f(x) = \begin{cases} x^2 \frac{5}{2} x + 1 & \text{se } x \ge 0 \\ x + 2 & \text{se } x < 0 \end{cases}$, determine os valores do domínio que têm imagem 7.
- **359.** Considere a função y = f(x) definida por:

$$\begin{cases} y = 4x & \text{se } 0 \le x \le 2 \\ y = -x^2 + 6x & \text{se } 2 < x \le 6 \end{cases}$$

- a) Esboce o gráfico de y = f(x) no intervalo $0 \le x \le 6$.
- b) Para que valores de x temos f(x) = 5?
- 360. Considerando a função real definida pela sentença

$$f(x) = \begin{cases} x^2 + bx + c & \text{se } x \le 0 \\ mx + n & \text{se } 0 < x < x_0 \\ x^2 + b_1 x + c_1 & \text{se } x \ge x_0 \end{cases}$$

cujo gráfico é:



pode-se afirmar:

- a) A equação $f(x) = \frac{3}{2}$ tem 4 soluções.
- b) f(-2) = 1.
- c) Se 0 < x < 1, então $f(x) = -\frac{x}{2} + 1$.
- d) Se $x \ge 1$, então $f(x) = x^2 5x + 6$.
- e) O conjunto imagem da função é o intervalo $\left[-\frac{1}{4}, +\infty\right[$.

II. Módulo

130. Definição

Sendo $x \in \mathbb{R}$, define-se *módulo* ou *valor absoluto* de x, que se indica por |x|, por meio da relação

$$\begin{cases} |x| = x & \text{se } x \ge 0 \\ \text{ou} \\ |x| = -x & \text{se } x < 0 \end{cases}$$

Isso significa que:

- 1º) o módulo de um número real não negativo é igual ao próprio número;
- 2°) o módulo de um número real negativo é igual ao oposto desse número.

Assim, por exemplo, temos:

$$|+2| = +2, |-7| = +7, |0| = 0, \left|-\frac{3}{5}\right| = +\frac{3}{5}, |-\sqrt{2}| = +\sqrt{2}, |+\sqrt{3}| = +\sqrt{3}$$

131. Propriedades

Decorrem da definição as seguintes propriedades:

I.
$$|x| \ge 0, \forall x \in \mathbb{R}$$

II.
$$|x| = 0 \iff x = 0$$

III.
$$|x| \cdot |y| = |xy|, \forall x, y \in |R|$$

IV.
$$|x|^2 = x^2, \forall x \in \mathbb{R}$$

- $V. x \leq |x|, \forall x \in R$
- VI. $|x + y| \leq |x| + |y|, \forall x, y \in \mathbb{R}$
- VII. $|x y| \ge |x| |y|, \forall x, y \in \mathbb{R}$
- VIII. $|x| \le a \ e \ a > 0 \iff -a \le x \le a$
 - IX. $|x| \ge a$ e $a > 0 \iff x \le -a$ ou $x \ge a$

Demonstrações

- I. Se $x \ge 0$, então $|x| = x \ge 0$. Se x < 0, então |x| = -x > 0.
- II. Se x = 0, então |x| = x = 0. Se |x| = 0, então x = 0, pois, caso $x \ne 0$, resultaria |x| > 0.
- III. Se $x \geqslant 0$ e $y \geqslant 0$, então $|x| \cdot |y| = x \cdot y = |x \cdot y|$, pois $x \cdot y \geqslant 0$. Se x < 0 e y < 0, então $|x| \cdot |y| = (-x) \cdot (-y) = xy = |x \cdot y|$, pois $x \cdot y > 0$. Se $x \geqslant 0$ e y < 0, então $|x| \cdot |y| = x \cdot (-y) = -x \cdot y = |x \cdot y|$, pois $x \cdot y \leqslant 0$.

Se x < 0 e $y \ge 0$, analogamente.

- IV. Se $x \ge 0$, então x = |x| e daí $x^2 = |x|^2$. Se x < 0, então -x = |x| e daí $(-x)(-x) = |x| \cdot |x|$, isto é, $x^2 = |x|^2$.
- V. Se $x \ge 0$, então x = |x| e, se x < 0, então x < 0 < |x|; portanto, $x \le |x|$ para todo x real.
- VI. $|x+y|^2 = (x+y)^2 = x^2 + y^2 + 2xy \le |x|^2 + |y|^2 + 2 \cdot |x| \cdot |y| = (|x| + |y|)^2 e \operatorname{daf} |x+y| \le |x| + |y|.$
- VII. $|x-y|^2 = (x-y)^2 = x^2 + y^2 2xy \ge x^2 + y^2 2|x| \cdot |y| = |x|^2 + |y|^2 2|x| \cdot |y| = (|x| |y|)^2$ e daí $|x-y| \ge |x| |y|$.
- VIII. $|x| \le a \stackrel{a>0}{\Longleftrightarrow} x^2 \le a^2 \iff x^2 a^2 \le 0 \iff (x+a)(x-a) \le 0 \Leftrightarrow -a \le x \le a$
 - IX. $|x| \geqslant a \stackrel{a>0}{\Longleftrightarrow} x^2 \leqslant a^2 \iff x^2 a^2 \geqslant 0 \iff (x+a)(x-a) \geqslant 0 \iff x \leqslant -a \text{ ou } x \geqslant a$

III. Função modular

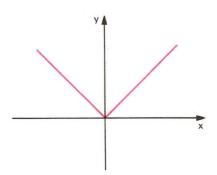
132. Uma aplicação de |R| em |R| recebe o nome de *função módulo* ou *modular* quando a cada $x \in |R|$ associa o elemento $|x| \in |R|$.

$$f(x) = |x|$$

Utilizando o conceito de módulo de um número real, a função modular pode ser definida também da seguinte forma:

$$f(x) = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0. \end{cases}$$

O gráfico da função modular é a reunião de duas semi-retas de origem O, que são as bissetrizes do 1° e 2° quadrantes.



A imagem desta função é $Im = IR_+$, isto é, a função modular somente assume valores reais não negativos.

EXERCÍCIOS

361. Construa os gráficos das funções definidas em IR:

a)
$$f(x) = |2x|$$

$$b) f(x) = |3x|$$

362. Construa o gráfico da função real definida por f(x) = |x + I|.

Solução | - ze ish s him - (ze) = jet - pet - tige - tige - tige -

Podemos construir o gráfico de f(x) = |x + 1| por dois processos:

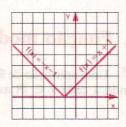
Primeiro processo

Notemos que
$$|x + 1| = \begin{cases} x + 1 & \text{se } x \ge -1 \\ -x - 1 & \text{se } x < -1 \end{cases}$$

Então a função pode ser definida como uma função a duas sentenças, ou seja,

$$f(x) = \begin{cases} x+1 & \text{se } x \ge -1 \\ -x-1 & \text{se } x < -1 \end{cases}$$

cujo gráfico está representado ao lado.



Segundo processo

Para construirmos o gráfico de

$$f(x) = |x + 1|,$$

fazemos inicialmente o gráfico da função g(x) = x + I, que está representado ao lado.

Para obtermos o gráfico de

$$f(x) = |g(x)| = |x + 1|$$

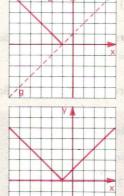
fazemos em duas etapas:

Primeira etapa

Se $g(x) \ge 0$, vamos ter f(x) = |g(x)| = g(x), isto é, o gráfico da função f coincidirá com o gráfico da função g.

Segunda etapa:

Se g(x) < 0, vamos ter f(x) = |g(x)| = g(x), isto é, o gráfico da função f será simétrico do gráfico da função g, relativamente ao eixo das abscissas. Construindo os gráficos obtidos, nas duas etapas, no mesmo plano cartesiano temos o gráfico da função f(x) = |x + I|.



363. Construa os gráficos das seguintes funções reais:

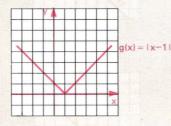
- a) f(x) = |x 1|
- b) f(x) = |2x 1|
- c) f(x) = |2x + 3|
- d) f(x) = |2 3x|

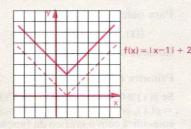
- e) $f(x) = |x^2 + 4x|$
- f) $f(x) = |x^2 3x + 2|$
- g) $f(x) = |4 x^2|$

364. Construa o gráfico da função definida em IR por f(x) = |x - 1| + 2.

Solução

Construímos inicialmente o gráfico da função g(x) = |x - I|. Para obtermos o gráfico de f(x) = g(x) + 2, deslocamos cada ponto do gráfico da função g duas unidades "para cima".





365. Construa os gráficos das seguintes funções reais:

a)
$$f(x) = |x| - 3$$

d)
$$f(x) = |x^2 - 1| - 2$$

b)
$$f(x) = |2x - 1| - 2$$

e)
$$f(x) = |x^2 - 4| + 3$$

c)
$$f(x) = |3x - 4| + 1$$

f)
$$f(x) = |x^2 + 4x + 3| - 1$$

366. Construa o gráfico da função real:

a)
$$y = |x| - 1$$

b)
$$y = -|x - a| + a$$

367. Construa o gráfico da função definida em |R| f(x) = |x + 2| + x - 1.

Solução

Notemos que

$$|x + 2| = \begin{cases} x + 2 & \text{se } x \ge -2 \\ -x - 2 & \text{se } x < -2 \end{cases}$$

Devemos, então, considerar dois casos:

- 1°) quando $x \ge -2$, temos: f(x) = |x + 2| + x - 1 == x + 2 + x - 1 = 2x + 1
- 2°) quando x < -2, temos: f(x) = |x + 2| + x - 1 = = -x - 2 + x - 1 = -3.

Anotando a função f como uma função definida a duas sentenças, vem:

$$f(x) = \begin{cases} 2x + 1 & \text{se } x \geqslant -2 \\ -3 & \text{se } x < -2 \end{cases}$$

cujo gráfico está na página anterior.

368. Construa os gráficos das funções reais abaixo.

a)
$$f(x) = |x| + x$$

b)
$$f(x) = |x| - x$$

c)
$$f(x) = |x - 3| + x + 2$$

d)
$$f(x) = |x + 1| - x + 3$$

e)
$$f(x) = |2x - 1| + x - 2$$

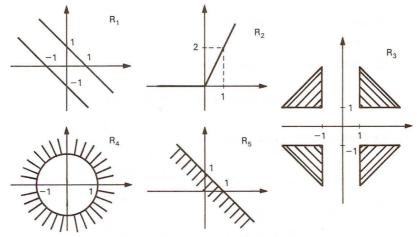
f)
$$f(x) = |3x + 2| - 2x + 3$$

g)
$$f(x) = x^2 - 4|x| + 3$$

h)
$$f(x) = |x^2 - 2|x| - 3|$$

i)
$$f(x) = |x^2 - 2x| + x + 2$$

- **369.** Trace o gráfico da função f de $|\mathbb{R}|$ em $|\mathbb{R}|$, definida por $f(x) = (x^2 I) + |x^2 I| + I$.
- **370.** Determine o conjunto imagem da função f de |R| em |R|, definida por f(x) = 2|x-3| + x-1.
- **371**. Os diagramas cartesianos abaixo representam relações em R.



Analise os diagramas e indique as afirmativas verdadeiras.

a)
$$R_1 = R_1^{-1}$$

b)
$$R_2 = \{(x, y) \in \mathbb{R}^2; y = |x| + x\}$$

c)
$$R_3 = \{(x, y) \in |R^2; |x| > 1 \text{ e } |y| \ge 1\}$$

d)
$$D(R_4) =]-\infty, -1] \cup [1, +\infty[$$

e)
$$I(R_5) =]-\infty, 1]$$

FUNÇÃO MODULAR

- **372.** Construa o gráfico da função $f(x) = \frac{|x|}{x}$ definida em $|\mathbb{R}^*$.
- **373.** Construa o gráfico da função $f(x) = \frac{|x-I|}{I-x}$ definida em $|R-\{I\}$.
- 374. Construa o gráfico da função definida em IR por:

$$f(x) = |2x + 1| + |x - 1|.$$

Solução

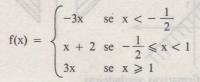
Notemos que
$$|2x + 1| = \begin{cases} 2x + 1 & \text{se } x \ge -\frac{1}{2} \\ -2x - 1 & \text{se } x < -\frac{1}{2} \end{cases}$$

$$e^{-1} = \begin{cases} x - 1 & \text{se } x \ge 1 \\ -x + 1 & \text{se } x < 1 \end{cases}$$

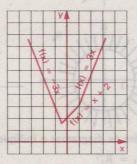
Devemos, então, considerar três casos:

- 1°) quando $x < -\frac{1}{2}$, temos f(x) = |2x + 1| + |x 1| = -2x 1 x + 1 = -3x
- 2°) quando $-\frac{1}{2} \le x < 1$, temos f(x) = |2x+1| + |x-1| = 2x + 1 x + 1 = x + 2
- 3°) quando $x \ge 1$, temos f(x) = |2x+1| + |x-1| = 2x + 1 + x 1 = 3x.

Anotando a função f como uma função definida a várias sentenças, vem:



cujo gráfico está ao lado.



375. Construa o gráfico da função real definida por:

a)
$$f(x) = |x - 1| - |x|$$

b)
$$y = -x|x| = -x|x|$$

376. Construa os gráficos das seguintes funções reais:

a)
$$f(x) = |x + 1| + |x - 1|$$

d)
$$f(x) = |3x + 3| - |2x - 3|$$

b)
$$f(x) = |x + 1| - |x - 1|$$

e)
$$f(x) = |x^2 - 4| - |x - 2|$$

c)
$$f(x) = |2x - 2| + |x + 3|$$

f)
$$f(x) = \frac{|x^2 - 2x| - |x^2 - 4|}{2}$$

377. Construa o gráfico da função definida em IR:

$$f(x) = ||2x - 2| - 4|.$$

Solução

Construímos inicialmente o gráfico de g(x) = |2x - 2| - 4.

Analisemos as duas possibilidades:

1°) Se
$$g(x) \ge 0$$
, temos:

$$f(x) = |g(x)| = g(x)$$

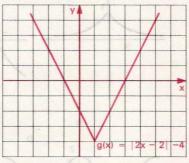
isto é, o gráfico da função f coincide com o gráfico da função g.

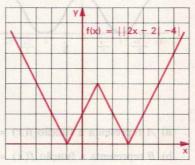
2°) Se
$$g(x) < 0$$
, temos:

$$f(x) = |g(x)| = -g(x)$$

isto é, o gráfico da função f é o oposto do gráfico da função g.

Considerando as duas possibilidades e representando num mesmo plano cartesiano, temos:





378. Construa os gráficos das funções reais:

a)
$$f(x) = ||x| - 2|$$

b)
$$f(x) = ||2x + 3| - 2|$$

c)
$$f(x) = ||x^2 - 1| - 3|$$

d)
$$f(x) = ||x - 1| + x - 3|$$

e)
$$f(x) = |x^2 - 4|x| + 3|$$

f)
$$f(x) = ||x + 2| - |x - 2||$$

g)
$$f(x) = ||3x - 3| - |2x + 1||$$

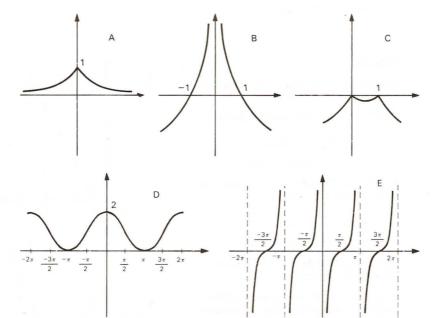
379. Construa o gráfico da função real definida por:

a)
$$f(x) = |x^2 - 5|x| + 6|$$

c)
$$g(x) = \frac{|x|}{x} + \frac{|x-1|}{x-1}$$

b)
$$y = 2x + |x - 2|x|$$

380. Considerando os gráficos abaixo, indique as afirmativas verdadeiras.



- a) A representa a função $f(x) = \frac{1}{2^{|x|}}$.
- b) B representa a função $f(x) = log_{\frac{1}{2}} |x|$.
- c) C representa a função $f(x) = -|x^2 x|$.
- d) D representa a função $f(x) = 1 + sen\left(\frac{\pi}{2} x\right)$.
- e) E representa a função f(x) = cotg x.

IV. Equações modulares

133. Lembremos da propriedade do módulo dos números reais, para k > 0:

$$|x| = k \iff x = k \quad \text{ou} \quad x = -k$$

e, utilizando essa propriedade, vamos resolver algumas equações modulares.

1°.) Resolver |2x - I| = 3. Então:

$$|2x - 1| = 3 \implies \begin{cases} 2x - 1 = 3 \implies x = 2 \\ \text{ou} \\ 2x - 1 = -3 \implies x = -1 \end{cases}$$

 $S = \{2, -1\}.$

2°) Resolver |3x - I| = |2x + 3|. Lembrando da propriedade

$$|a| = |b| \iff a = b \quad \text{ou} \quad a = -b$$

temos:

$$|3x - 1| = |2x + 3| \iff \begin{cases} 3x - 1 = 2x + 3 & \implies x = 4 \\ \text{ou} \\ 3x - 1 = -2x - 3 & \implies x = -\frac{2}{5} \end{cases}$$

$$S = \left\{4, -\frac{2}{5}\right\}.$$

3°.) Resolver |x + I| = 3x + 2. Devemos ter inicialmente:

$$3x + 2 \geqslant 0 \implies x \geqslant -\frac{2}{3}$$

para que seja possível a igualdade.

Supondo $x \ge -\frac{2}{3}$, temos:

$$|x + 1| = 3x + 2 \implies \begin{cases} x + 1 = 3x + 2 \implies x = -\frac{1}{2} \\ \text{ou} \\ x + 1 = -3x - 2 \implies x = -\frac{3}{4} \text{ (não convém)} \end{cases}$$

$$S = \left(-\frac{1}{2}\right).$$

EXERCÍCIOS

381. Resolva as seguintes equações, em IR:

a)
$$|x + 2| = 3$$

b)
$$|3x - 1| = 2$$

c)
$$|4x - 5| = 0$$

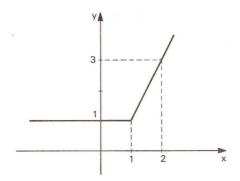
d)
$$|2x - 3| = -1$$

e)
$$|x^2 - 3x - 1| = 3$$

f)
$$|x^2 - \frac{5}{2}x - \frac{1}{4}| = \frac{5}{4}$$

g)
$$|x^2 - 4x + 5| = 2$$

382. Considere o gráfico abaixo:



- a) Mostre que este gráfico representa a função de |R| em |R| definida por f(x) = x + |x I|.
- b) Dada a função constante $g: \mathbb{R} \to \mathbb{R}$ definida por g(x) = k, para que valores de k a equação f(x) = g(x) tem uma única solução?

383. Resolva, em IR, as seguintes equações:

a)
$$|3x + 2| = |x - 1|$$

b)
$$|4x - 1| - |2x + 3| = 0$$

c)
$$|x^2 + x - 5| = |4x - 1|$$

d)
$$|x^2 + 2x - 2| = |x^2 - x - 1|$$

384. Resolva as seguintes equações, em IR:

a)
$$|x - 2| = 2x + 1$$

b)
$$|3x + 2| = 2x - 3$$

c)
$$|2x - 5| = x - 1$$

d)
$$|2x^2 + 15x - 3| = x^2 + 2x - 3$$

e)
$$|3x - 2| = 3x - 2$$

f)
$$|4 - 3x| = 3x - 4$$

385. Resolva, em IR, a equação $|x|^2 + |x| - 6 = 0$.

Sugestão: Faça |x| = y.

386. Resolva, em IR, a equação |2x - 3| + |x + 2| = 4.

Solução

$$|2x - 3| = \begin{cases} 2x - 3, & x \ge \frac{3}{2} \\ -2x + 3, & x < \frac{3}{2} \end{cases}$$

$$|x + 2| = \begin{cases} x + 2, & x \ge -2 \\ -x - 2, & x < -2 \end{cases}$$

$$|2x - 3| \frac{-2x + 3}{-x - 2} \frac{2x - 3}{|x + 2|}$$

$$|x + 2| \frac{-x - 2}{-3x + 1} \frac{x + 2}{|x + 2|} \frac{\frac{3}{2}x + 2}{|x + 2|}$$

$$|2x - 3| + |x + 2| \frac{-3x + 1}{|x + 2|} \frac{|-2| - x + 5}{|x + 2|} \frac{3}{2}$$

Temos, então:

$$|2x-3| + |x+2| = \begin{cases} -3x + 1, & x < -2 \\ -x + 5, & -2 \le x < \frac{3}{2} \\ 3x - 1, & x \ge \frac{3}{2} \end{cases}$$

Resolvendo cada parte, vem:

$$-3x + 1 = 4 \Rightarrow x = -1$$
 (rejeitado, porque x deve ser menor que -2)

$$-x + 5 = 4 \Rightarrow x = 1$$

$$3x - 1 = 4 \Rightarrow x = \frac{5}{3}$$

Resposta:
$$S = \left\{1, \frac{5}{3}\right\}$$
.

387. Qual é o conjunto solução, em IR, da equação:

a)
$$|x + 1| - |x| = 2x + 1$$

$$b) \frac{|x|}{x} = \frac{|x-1|}{x-1}$$

V. Inequações modulares

- 134. Lembrando das propriedades de módulo dos números reais, para k > 0:
 - 1) $|x| < k \iff -k < x < k$
 - 2) $|x| > k \Leftrightarrow x < -k \text{ ou } x > k$

e, utilizando essas propriedades, podemos resolver algumas inequações modulares.

1°) Resolver em |R: |2x + I| < 3.

Então:

$$|2x + 1| < 3 \implies -3 < 2x + 1 < 3 \implies -2 < x < 1$$

S = $\{x \in |\mathbb{R}| -2 < x < 1\}$.

2°) Resolver em |R: |4x - 3| > 5.

Então:

$$|4x-3| > 5 \implies (4x-3 < -5 \text{ ou } 4x-3 > 5) \implies$$

$$\implies \left(x < -\frac{1}{2} \text{ ou } x > 2\right)$$

$$S = \left\{ x \in |R| \mid x < -\frac{1}{2} \text{ ou } x > 2 \right\}.$$

EXERCÍCIOS

- 388. Resolva, em IR, as inequações abaixo.
 - a) |3x 2| < 4
 - b) $|2x 3| \le 1$
 - c) $|4 3x| \le 5$
 - d) $|3x + 4| \le 0$
 - e) |2x + 4| < -3
 - f) |2x 1| > 3

- g) $|5x + 4| \ge 4$
- h) $|2 3x| \ge 1$
- i) |3x 5| > 0
- j) $|4x 7| \ge -1$
- k) $1 < |x 1| \le 3$

- 389. Resolva as inequações seguintes, em IR.
 - a) $|x^2 5x + 5| < 1$

 $f) \left| \frac{x+1}{2x-1} \right| \leqslant 2$

b) $|x^2 - x - 4| > 2$

g) ||x| - 2| > 1

c) $|x^2 - 5x| \ge 6$

h) $||2x + 1| - 3| \ge 2$

d) $|x^2 - 3x - 4| \le 6$

i) $||2x - 1| - 4| \le 3$

- e) $\left| \frac{2x-3}{3x-1} \right| > 2$
- 390. Seja a inequação $\left|2 \frac{I}{x}\right| \le 5$. Quantas de suas soluções são números inteiros positivos e menores que 30?
- 391. Julgue os itens abaixo.
 - a) A equação |2x 1| = 3 possui duas raízes reais.
 - b) Os valores reais de x para os quais

$$(3x-2)(1-x)(1+x^2)\geqslant 0$$
 são $\left\{x\in \text{ reais }\left|\frac{2}{3}\leqslant x\leqslant 1\right\}\right\}$.

- c) Os valores reais de x tais que $\frac{x+2}{3} \frac{x-1}{2} \ge x$ são $\{x \in \text{reais } | x \le 1\}$.
- d) Não existe número real x que satisfaça a inequação $|\cos x| \ge 1$.
- e) O polinômio $5x^6 6x^5 + x$ é divisível por $(x 1)^2$.
- **392.** Qual é o comprimento do intervalo que representa a interseção dos conjuntos $A = \{x \in |\mathbb{R} \mid |x-2| < 4\} \text{ e } \{x \in |\mathbb{R} \mid |x-7| < 2\}$?
- 393. Determine o conjunto solução, em |R|, da inequação 1 < |x 3| < 4.
- 394. Para que valores de x, reais, a função $P(x) = |x^2 + x 1|$ é menor do que 1?
- 395. Se $|x^2 4| < N$ para todo x real, tal que |x 2| < 1, qual é o menor valor possível para N?
- 396. Julgue os itens abaixo.
 - a) As inequações $(x-5)^2$ (x+10) < 0 e $x^2(x+10) < 0$ têm o mesmo conjunto solução.
 - b) $|x| |y| \le |x y|, \forall x, y \text{ números reais.}$
 - c) Se $f(z) = \frac{z-1}{z+1}$, $z \neq \pm 1$, então

$$\frac{f(z) - f(-z)}{1 + f(z) \cdot f(-z)} = \frac{4z}{1 - z^2}.$$

d) O domínio máximo de definição da função

$$f(x) = (|5 - 2x| - 7)^{1/2}$$
 é $-1 \le x \le 6$.

- e) A função $f(x) = \frac{1}{x+3} \frac{1}{(x-2)^2}$ está definida para todo número real $x \neq 2$.
- f) A imagem da função $f(x) = \sqrt{1-x^2} + \sqrt{x^2-1}$ é só o zero.
- 397. Quais os números inteiros que satisfazem a sentença $3 \le |2x 3| < 6$?
- 398. Resolva, em IR, a inequação $2x 7 + |x + 1| \ge 0$.

Seja a înequação | 2 - 1 | \$ 5. Quantas de suas seleções são no organos

Notando que $|x + I| = \begin{cases} x + 1 & \text{se } x \ge -I \\ -x - I & \text{se } x < -I \end{cases}$ devemos, então, considerar dois casos:

- 1°) Se $x \ge -1$, temos: $2x - 7 + |x + 1| \ge 0 \implies 2x - 7 + x + 1 \ge 0 \iff x \ge 2$. A solução S_l é: $S_1 = \{x \in |\mathbb{R} \mid x \ge -1\} \cap \{x \in |\mathbb{R} \mid x \ge 2\} = \{x \in |\mathbb{R} \mid x \ge 2\}$.
 - 2°) Se x < -1, temos: $2x 7 + |x + 1| \ge 0 \implies 2x 7 x 1 \ge 0 \implies x \ge 8$. A solução S_2 é: $S_2 = \{x \in |\mathbb{R} \mid x < -1\} \cap \{x \in |\mathbb{R} \mid x \ge 8\} = \emptyset$.

A solução da inequação proposta é

$$\mathbb{N} > \mathbb{N} + \mathbb{N} > \mathbb{N}$$
 observed $\mathbb{S} = \mathbb{S}_1 \cup \mathbb{S}_2$ below observed a reference of

e portanto

S =
$$\{x \in \mathbb{R} \mid x \geqslant 2\}$$
.

- 399. Resolva, em IR, as seguintes inequações:
 - a) $|x 1| 3x + 7 \le 0$
 - b) |2x + 1| + 4 3x > 0
 - c) $|3x 2| + 2x 3 \le 0$
 - d) $|x + 1| x + 2 \ge 0$
 - e) |3x 4| + 2x + 1 < 0
 - f) $|x^2 4x| 3x + 6 \le 0$
 - g) $|x^2 6x + 5| + 1 < x$
- **400**. Resolva a inequação $|x^2 4| < 3x$.

- 401. Indique as afirmativas verdadeiras.
 - a) $\forall x \in [-1, 0], |x| = -x$.
 - b) O complementar do conjunto solução da inequação $|x-1| \ge 2$ é o intervalo]-1, 3[.
 - c) A equação |x-1| = 2x tem duas soluções.
 - d) Todas as raízes da equação $2^{\lfloor x^2 3 \rfloor} = 8$ são números irracionais.
 - e) O conjunto solução da inequação $\log_{\frac{1}{4}}(x^2-4) < 2$ está contido no conjunto $]-\infty, -2[\cup 12, +\infty[$.
- **402.** Qual é o conjunto solução, em IR, de |x-3| < x + 3?
- 403. Resolva a inequação em $|R| |2x 6| |x| \le 4 x$.

Solução

$$|2x - 6| = \begin{cases} 2x - 6 & \text{se } x \ge 3 \\ -2x + 6 & \text{se } x < 3 \end{cases}$$
 e $|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$

construímos a tabela: N < 14 - x1 + 15 - x1 shahinugiesh a nviocesh

+x ≥ x - \ +x obsidedes on the figure of the first x + x = x 0.000 0.00						
12x - 61 =	-2x + 6	-2x + 6	2x - 6			
x =	-х	x	x			
2x - 6 - x =	-x + 6	-3x + 6	x - 6			

Temos:

$$|2x - 6| - |x| = \begin{cases} x - 6 & \text{se } x \geqslant 3 \\ -3x + 6 & \text{se } 0 \leqslant x < 3 \\ -x + 6 & \text{se } x < 0 \end{cases}$$

Devemos considerar três casos:

1º) Se $x \ge 3$, a inequação proposta é equivalente a:

$$x-6 \leqslant 4-x \implies 2x \leqslant 10 \implies x \leqslant 5.$$

A solução S₁ é:

$$S_1 = \{x \in |R \mid x \ge 3\} \cap \{x \in |R \mid x \le 5\} = \{x \in |R \mid 3 \le x \le 5\}.$$

2°) Se $0 \le x < 3$, a inequação proposta é equivalente a:

$$-3x + 6 \le 4 - x \implies -2x \le -2 \implies x \ge 1$$
.

A solução S, é:

$$\mathbf{S_2} = \{\mathbf{x} \in \mathsf{IR} \mid \mathbf{0} \leqslant \mathbf{x} < \mathbf{3}\} \cap \{\mathbf{x} \in \mathsf{IR} \mid \mathbf{x} \geqslant \mathbf{1}\} = \{\mathbf{x} \in \mathsf{IR} \mid \mathbf{1} \leqslant \mathbf{x} < \mathbf{3}\}.$$

3°.) Se x < 0, a inequação proposta é equivalente a:

$$-x + 6 \le 4 - x \implies 6 \le 4$$
, que é absurdo. Logo a solução S_3 é: $S_3 = \emptyset$.

A solução da inequação $|2x - 6| - |x| \le 4 - x$ é:

$$S = S_1 \cup S_2 \cup S_3$$

 $S = \{x \in |R| \ 3 \le x \le 5\} \cup \{x \in |R| \ 1 \le x < 3\} \cup \emptyset$ e portanto:

$$S = \{x \in |R| | 1 \le x \le 5\}.$$

- 404. Resolva as seguintes inequações, em IR:
 - a) |x + 2| |x 3| > x
- 1
- b) |3x + 2| |2x 1| > x + 1
- c) $|x-2| |x+4| \le 1 x$
- d) |x + 2| + |2x 3| < 10
- e) |x + 2| + |2x 2| > x + 8
- f) $3\{|x+1|-|x-1|\} \le 2x^2-4x$
- g) $|x-2| |x+3| > x^2 4x + 3$
- **405.** Resolva a designaldade $|x-2| + |x-4| \ge 6$.
- **406.** Qual é, em IR, o conjunto solução da desigualdade $|x+I| |x| \le x+2$?

LEITURA

Boole e a Álgebra do Pensamento

Hygino H. Domingues

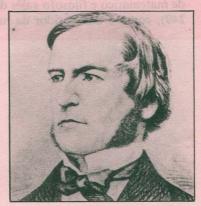
A lógica como ciência remonta a Aristóteles (384-322 a.C.), seu criador. No século XVII Descartes (1596-1650) e Leibniz (1646-1716) tencionaram dotá-la de padrões matemáticos, o que pressupõe uma simbologia e um cálculo formal próprios. O alcance dessa lógica seria universal, aplicável a todos os campos do conhecimento. Mas nenhum dos dois deixou sobre o assunto senão alguns escritos fragmentados. Inclusive a contribuição de Leibniz, embora específica, somente em 1901 se tornou conhecida.

Assim é que o marco inicial da lógica simbólica, embora Leibniz seja considerado seu fundador, está fincado no ano de 1847 com a publicação das obras *Mathematical analysis of Logic* de George Boole (1815-1864) e *Formal Logic* de Augustus De Morgan (1806-1871).

De família modesta, Boole nasceu em Lincoln, na Inglaterra. Sua instrução formal não passou dos graus básicos mas, dotado de grande inteligência, e vendo no conhecimento o caminho de seu gosto para ascender socialmente, enveredou pelo autodidatismo. De início aprendeu por si só latim e grego. Depois, como professor de uma escola elementar, resolveu ampliar seus conhecimentos de matemática, pondose a estudar, entre outras, as obras clássicas de Laplace e Lagrange. O interesse pela lógica certamente derivou de seu relacionamento com De Morgan, de quem ficara amigo. Sua obra citada, embora não lhe

trouxesse grande fama, propicioulhe, dois anos depois de publicada, uma nomeação de professor no recém-criado Queens College, em Cork, Irlanda.

Em 1854 Boole lança sua obra-prima, Investigation of the laws of thought (As leis do pensamento — como usualmente é conhecida), na qual elucida e amplia as idéias de 1847. A finalidade era ainda expressar simbolicamente as leis do pensamento, visando poder usar de maneira mais direta e precisa a dedução lógica.



George Boole (1815-1864).

Boole procurava transformar certos processos elementares do raciocínio em axiomas da lógica. A chamada álgebra dos conjuntos ou álgebra de Boole, introduzida por ele em *As leis do pensamento*, dá bem uma idéia disso. Boole usava letras x, y, z, ... para indicar partes (subconjuntos) de um conjunto tomado como universo. Se x e y denotavam duas dessas partes, o que hoje chamamos de *interseção* e *união*, Boole indicava por xy e x+y, respectivamente. (Os símbolos atuais \cap e \cup são devidos a Giuseppe Peano (1858-1932).) Na verdade, as uniões consideradas por Boole pressupunham partes disjuntas; a generalização, para o conceito atual, é devida a W.S. Jevons (1835-1882).

Assim, sendo óbvio para o espírito que xy = yx e x + y = y + x, (xy)z = x(yz) e x + (y+z) = (x+y) + z e x(y+z) = xy + xz, essas leis foram tomadas como axiomas de sua álgebra. Até aí não há diferença entre as álgebras usuais e a de Boole, sob o aspecto estrutural. Mas nesta última há leis particulares como $x^2 = xx = x$ e x + x = x. Ou ainda, simbolizando por I o conjunto universo (notação de Boole): I + I = I.

Um exemplo menos imediato envolve a lei do terceiro excluído. Por exemplo, se I indica o conjunto de todos os seres vivos e x o conjunto dos gatos, como I-x era para Boole o complemento de x, então x+(I-x)=I traduz a lei referida: todo ser vivo ou é gato ou não é gato.

Não passou despercebida a Boole a semelhança entre a álgebra dos conjuntos e a das proposições. Assim é que para duas proposições p e q indicava por pq a conjunção "p e q" e por p+q a disjunção "p ou q". A afirmação x=I significa, nesse contexto, que x é verdadeira e x=0 que x é falsa. Mas Boole não foi longe com esse assunto.

Porém já tinha feito o bastante para ser considerado pelo grande matemático e filósofo galês deste século, Bertrand Russel (ver pág. 249), como o descobridor da matemática pura.

Outras Funções Elementares

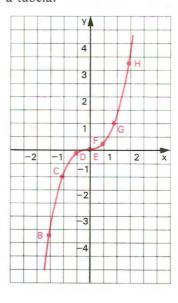
I. Função $f(x) = x^3$

135. Façamos um estudo da função f, de |R| em |R|, que associa a cada $x \in |R|$ o elemento $x^3 \in |R|$.

$$f(x) = x^3$$

Vamos inicialmente construir a tabela:

x	ponto	
-2	-8	A
$-\frac{3}{2}$	$-\frac{27}{8}$	B
-1	-1	C
$-\frac{1}{2}$	$-\frac{1}{8}$	D,
0	0	E
1/2	1/8	F
1	1	G
3 2	<u>27</u> 8	Н
2	8	I
2 5 2	. 125	J
3	27	K



Observemos que a função $f(x) = x^3$:

a) é uma função crescente em IR, isto é:

$$(\forall x_1 \in |R, \forall x_2 \in |R) (x_1 < x_2 \implies x_1^3 < x_2^3)$$

b) tem imagem $Im = \mathbb{R}$ pois, qualquer que seja o $y \in \mathbb{R}$, existe $x \in \mathbb{R}$ tal que $y = x^3$, isto é, $x = \sqrt[3]{y}$.

EXERCÍCIO

407. Faça o esboço dos gráficos das seguintes funções definidas em IR.

a)
$$f(x) = x^3 + 1$$

b)
$$f(x) = -x^3$$

c)
$$f(x) = 2 - x^3$$

d)
$$f(x) = (x + 1)^3$$

e)
$$f(x) = (2 - x)^3$$

f)
$$f(x) = (x-1)^3 - 1$$

g)
$$f(x) = 2 + (1 - x)^3$$

h)
$$f(x) = |x^3|$$

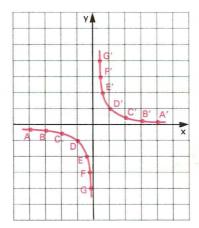
II. Função recíproca

136. Uma aplicação f de $|\mathbb{R}^*|$ em $|\mathbb{R}|$ recebe o nome de função recíproca quando a cada elemento $x \in |\mathbb{R}^*|$ associa o elemento $\frac{1}{x}$.

$$f(x) = \frac{1}{x}$$

Vamos inicialmente construir a tabela:

x	-4	-3	-2	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$	1 4	1 3	1/2	1	2	3	4
$y = \frac{1}{x}$	$-\frac{1}{4}$	$-\frac{1}{3}$	$-\frac{1}{2}$	-1	-2	-3	-4	4	3	2	1	1/2	1/3	$\frac{1}{4}$
ponto	A	В	С	D	Е	F	G	G'	F'	E'	D'	C'	B'	A'



Observemos que a função recíproca $y = \frac{1}{x}$:

- a) não é definida para x = 0;
- b) tem imagem $Im = |\mathbb{R}^*|$ pois, dado um número real $y \neq 0$, sempre existe um x também real tal que $y = \frac{I}{x}$;
- c) tem por gráfico uma hipérbole equilátera(*).

EXERCÍCIOS

408. Faça o esboço do gráfico das funções:

a)
$$f(x) = -\frac{1}{x}$$

$$b) f(x) = \frac{1}{2x}$$

c)
$$f(x) = -\frac{1}{2x}$$

d)
$$f(x) = \frac{1}{|x|}$$

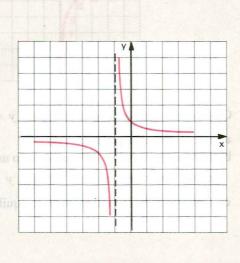
^(*) Isso está provado em nosso livro de Geometria Analítica desta coleção.

409. Faça o esboço do gráfico $f(x) = \frac{1}{x+1}$.

Solução

Vamos construir uma tabela da seguinte maneira: atribuímos valores a x + 1, calculamos $\frac{1}{x+1}$ e finalmente calculamos x:

x	x + 1	$y = \frac{1}{x+1}$
-4	-3	$-\frac{1}{3}$
-3	-2	$-\frac{1}{2}$
-2	-1	-1
	$-\frac{1}{2}$	-2
$-\frac{4}{3}$	$-\frac{1}{3}$	-3
	1 3	3
$-\frac{1}{2}$	1/2	2 (*)
0	1	1
1	2	1/2
2	3	1/3



410. Faça o esboço gráfico das seguintes funções:

a)
$$f(x) = \frac{1}{x-1}$$

b)
$$f(x) = \frac{1}{2-x}$$

c)
$$f(x) = \frac{1}{|x + 2|}$$

411. Faça o esboço gráfico das seguintes funções:

a)
$$f(x) = \frac{x + 3}{x + 2}$$

c)
$$f(x) = \frac{x-1}{2-x}$$

b)
$$f(x) = \frac{x + 1}{x - 1}$$

d)
$$f(x) = \left| \frac{x-1}{x} \right|$$

412. Faça o esboço gráfico da função $f(x) = \frac{x}{x-1}$.

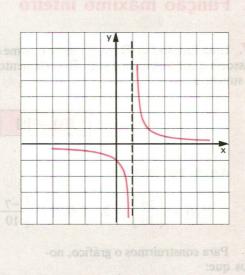
Chama-se ponto fixo de uma l'unção f um número real y tal ospuloS

Observemos que:

$$\frac{x}{x-1} = \frac{x-1+1}{x-1} = \frac{x-1}{x-1} + \frac{1}{x-1} = 1 + \frac{1}{x-1}.$$

Vamos construir a tabela da seguinte maneira: atribuímos valores a x-1, calculamos $1+\frac{1}{x-1}$ e finalmente x.

X	x - 1	$y = 1 + \frac{1}{x - 1}$
-2	-3	2/3
-1	-2	$\frac{1}{2}$
0	-1	0
1/2	$-\frac{1}{2}$	-1
2 3	$-\frac{1}{3}$	-2
$ \begin{array}{r} \frac{1}{2} \\ \frac{2}{3} \\ \frac{4}{3} \\ \frac{3}{2} \\ 2 \end{array} $	1 3	4
3/2	1/2	3
2	1	2
3	2	$\frac{3}{2}$ $\frac{4}{3}$
4	3	4/3



- **413.** Calcule o valor aproximado da área limitada pela curva $y = \frac{2}{x}$, pelo eixo 0x e pelas retas x = 1 e x = 4. Use no cálculo três trapézios de bases contidas nas retas x = 1, x = 2, x = 3 e x = 4.
- 414. Represente, graficamente, a função definida por:

a)
$$f(x) = \frac{1}{4x - x^2 - 4}$$

c)
$$g(x) = \frac{1}{(x-2)^2}$$

b)
$$y = \frac{8}{x^2 + 4}$$

- **415.** Determine os pontos de interseção das curvas $y = \frac{1}{x^2}$ e $y = x^2$ algébrica e graficamente.
- **416.** Chama-se *ponto fixo* de uma função f um número real x tal que f(x) = x. Calcule os pontos fixos da função $f(x) = 1 + \frac{1}{x}$.
- **417.** Esboce um gráfico e indique por meio de hachuras o conjunto dos pontos $P(x, y) \in \mathbb{R}^2$ que satisfazem o seguinte sistema de desigualdades:

$$\begin{cases} 0 \leqslant xy \leqslant 1 \\ x^2 + y^2 \leqslant 2 \end{cases}$$

III. Função máximo inteiro

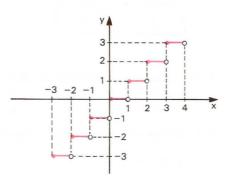
137. Uma função f de |R| em |R| recebe o nome de *função máximo inteiro* quando associa a cada elemento $x \in |R|$ o elemento [x], que é o maior inteiro que não supera x.

$$f(x) = [x]$$

Assim, por exemplo:

$$[3,9] = \left[\frac{39}{10}\right] = 3$$
, $[-0,7] = \left[\frac{-7}{10}\right] = -1$ e $[4] = 4$.

Para construirmos o gráfico, notemos que:



A imagem da função máximo inteiro é o conjunto $Im = \mathbb{Z}$.

EXERCÍCIOS

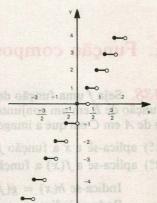
- 418. Construa o gráfico das seguintes funções definidas em IR.
 - a) f(x) = 2[x]

- b) f(x) = -[x]
- **419.** Construa o gráfico da função real definida por f(x) = [2x].

Solução

Vamos construir uma tabela da seguinte maneira: atribuímos valores a 2x, calculamos [2x] e finalmente x.

X	2x	y = [2x]
$-2 \leqslant x < -1,5$	$-4 \leqslant 2x < -3$	-4
$-1,5 \leqslant x < -1$	$-3 \leqslant 2x < -2$	-3
$-1 \le x < -0.5$	$-2 \leqslant 2x < -1$	-2
$-0.5 \leqslant x < 0$	$-1 \leqslant 2x < 0$	-1
$0 \leqslant x < 0.5$	$0 \leqslant 2x < 1$	0
$0.5 \leqslant x < 1$	$1\leqslant 2x<2$	1
$1 \leqslant x < 1,5$	$2 \leqslant 2x < 3$	2
$1,5 \leqslant x < 2$	$3 \leqslant 2x < 4$	3
$2 \leqslant x < 2,5$	$4 \leqslant 2x < 5$	4



- 420. Construa os gráficos das seguintes funções definidas em IR:
 - a) $f(x) = \left[\frac{x}{2}\right]$

e) f(x) = |[x]|

b) f(x) = [-x]

 $f) f(x) = [x]^2$

c) f(x) = [x - 1]

g) f(x) = x - [x]

d) f(x) = [|x|]

h) f(x) = x + [x]

Função Composta Função Inversa

I. Função composta

138. Seja f uma função de um conjunto A em um conjunto B e seja g uma função de B em um conjunto C. Chama-se função composta de g e f à função h de A em C em que a imagem de cada x é obtida pelo seguinte procedimento:

- 1°) aplica-se a x a função f, obtendo-se f(x)
- 2°) aplica-se a f(x) a função g, obtendo-se g(f(x)).

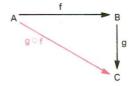
Indica-se h(x) = g(f(x)) para todo $x \in A$.

Pode-se indicar a composta por $g \circ f$ (lê-se:. "g composta com f" ou "g círculo f"); portanto:

$$(g \circ f)(x) = g(f(x))$$

para todo $x \in A$.

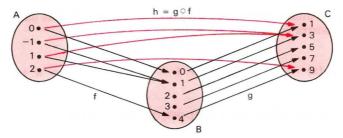
Podemos representar também a composta $g \circ f$ pelo diagrama.



Exemplos

1°) Sejam os conjuntos $A = \{-1, 0, 1, 2\}, B = \{0, 1, 2, 3, 4\}$ e $C = \{1, 3, 5, 7, 9\}$ e as funções:

f, de A em B, definida por $f(x) = x^2$ g, de B em C, definida por g(x) = 2x + 1.



Observemos por exemplo que: f(2) = 4, g(4) = 9 e h(2) = 9, isto é, $h(2) = (g \circ f)(2) = g(f(2)) = g(4) = 9$.

Para obtermos a lei de correspondência da função composta $h = g \circ f$, fazemos assim: g(f(x)) é obtida a partir de g(x) trocando-se x por f(x).

No exemplo dado, temos:

$$h(x) = (g \circ f)(x) = g(f(x)) = 2 \cdot f(x) + 1 = 2x^2 + 1.$$

Se vamos calcular h(2), fazemos deste modo:

$$h(2) = 2 \cdot 2^2 + 1 = 9.$$

2°.) Sejam as funções reais f e g definidas por f(x) = x + 1 e $g(x) = x^2 + x + 1$.

Notemos que a função composta $h = g \circ f$ é definida por:

$$h(x) = (g \circ f)(x) = g(f(x)) = [f(x)]^2 + f(x) + 1 = (x+1)^2 + (x+1) + 1 = x^2 + 3x + 3.$$

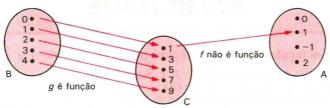
Observações

- 1ª) A composta $g \circ f$ só está definida quando o contradomínio da f é igual ao domínio da g. Em particular, se as funções $f \circ g$ são de $A \circ g$ então as compostas $f \circ g \circ g \circ f$ estão definidas e são funções de $A \circ g$ em A.
- 2ª) Notemos que, em geral, $f \circ g \neq g \circ f$, isto é, a composição de funções não é comutativa.

Pode acontecer que somente uma das funções $f \circ g$ ou $g \circ f$ esteja definida.

Assim, no primeiro exemplo, se tentarmos obter $f \circ g$, verificaremos que é impossível, pois:

g é função de B em C mas f não é função de C em A.



3ª) As duas composições $f \circ g$ e $g \circ f$ estão definidas mas $f \circ g \neq g \circ f$, como nos mostra o segundo exemplo:

$$(g \circ f)(x) = x^2 + 3x + 3$$

$$(f \circ g)(x) = f(g(x)) = g(x) + 1 = (x^2 + x + 1) + 1 = x^2 + x + 2.$$

139. Associatividade da composição de funções

Teorema

Quaisquer que sejam as funções

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

tem-se:

$$(h \circ g) \circ f = h \circ (g \circ f).$$

Demonstração

Consideremos um elemento qualquer x de A e coloquemos f(x) = y, g(y) = w e h(w) = z; temos:

$$((h\circ g)\circ f)\ (x)\ =\ (h\circ g)\ (f(x))\ =\ (h\circ g)\ (y)\ =\ h(g(y))\ =\ h(w)\ =\ z$$
 e notemos que

$$(g \circ f)(x) = g(f(x)) = g(y) = w$$

portanto,

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(w) = z$$

então, temos:

$$((h \circ g) \circ f)(x) = (h \circ (g \circ f))(x),$$

para todo x de A.

EXERCÍCIOS

- **421.** Sejam as funções reais $f \in g$, definidas por $f(x) = x^2 + 4x 5$ e g(x) = 2x 3.
 - a) Obtenha as leis que definem $f \circ g$ e $g \circ f$.
 - b) Calcule $(f \circ g)(2)$ e $(g \circ f)(2)$.
 - c) Determine os valores do domínio da função $f \circ g$ que produzem imagem 16.

Solução

a) A lei que define $f \circ g$ é obtida a partir da lei de f, trocando-se x por g(x):

$$(f \circ g)(x) = f(g(x)) = [g(x)]^2 + 4[g(x)] - 5 = (2x - 3)^2 + 4(2x - 3) - 5$$

$$(f \circ g)(x) = 4x^2 - 4x - 8.$$

A lei que define $g \circ f$ é obtida a partir da lei de g, trocando-se x por f(x):

$$(g \circ f)(x) = g(f(x)) = 2 \cdot f(x) - 3 = 2(x^2 + 4x - 5) - 3$$

 $(g \circ f)(x) = 2x^2 + 8x - 13.$

b) Calculemos $f \circ g$ para x = 2

$$(f \circ g)(2) = 4 \cdot 2^2 - 4 \cdot 2 - 8 = 0,$$

calculemos $g \circ f$ para x = 2

$$(g \circ f)(2) = 2 \cdot 2^2 + 8 \cdot 2 - 13 = 11.$$

c) O problema em questão, resume-se em resolver a equação

$$(f \circ g)(x) = 16$$

ou seja:

$$4x^2 - 4x - 8 = 16 \implies 4(x^2 - x - 6) = 0 \implies x = 3 \text{ ou } x = -2.$$

- **422.** Sejam as funções reais $f \in g$, definidas por $f(x) = x^2 x 2 \in g(x) = 1 2x$.
 - a) Obtenha as leis que definem $f \circ g$ e $g \circ f$.
 - b) Calcule $(f \circ g)$ (-2) e $(g \circ f)$ (-2).
 - c) Determine os valores do domínio da função $f \circ g$ que produzem imagem 10.
- **423.** Sejam as funções reais $f \in g$ definidas por $f(x) = x^2 4x + 1$ e $g(x) = x^2 1$. Obtenha as leis que definem $f \circ g \in g \circ f$.
- **424.** Sejam as funções reais $f \in g$, definidas por $f(x) = 2 \in g(x) = 3x 1$. Obtenha as leis que definem $f \circ g \in g \circ f$.
- **425.** Nas funções reais $f \in g$, definidas por $f(x) = x^2 + 2 \in g(x) = x 3$, obtenha as leis que definem:
 - a) fog
- b) gof
- c) fof
- d) gog
- **426.** Considere a função em \mathbb{R} definida por $f(x) = x^3 3x^2 + 2x 1$. Qual é a lei que define f(-x)? E $f(\frac{1}{x})$? E f(x-1)?
- **427**. Dadas as funções reais definidas por f(x) = 3x + 2 e g(x) = 2x + a, determine o valor de a de modo que se tenha $f \circ g = g \circ f$.
- **428.** Se $f(x) = x^3$ e $g(x) = x^4$, mostre que $f \circ g = g \circ f$.

- **429.** Sejam as funções $f(x) = x^2 + 2x + 3$ e $g(x) = x^2 + ax + b$. Mostre que, se $f \circ g = g \circ f$, então f = g.
- **430.** Sejam as funções definidas por $f(x) = \sqrt{x} e g(x) = x^2 3x 4$. Determine os domínios das funções $f \circ g$ e $g \circ f$.

Solução

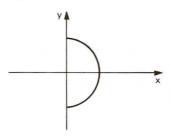
- a) $(f \circ g)(x) = f(g(x)) = \sqrt{g(x)} = \sqrt{x^2 3x 4}$. Para que exista $(f \circ g)(x) \in \mathbb{R}$, devemos ter $x^2 - 3x - 4 \ge 0$, isto é: $x \le -1$ ou $x \ge 4$. Então: $D(f \circ g) = \{x \in \mathbb{R} \mid x \le -1 \text{ ou } x \ge 4\}$.
- b) $(g \circ f)(x) = g(f(x)) = [g(x)]^2 3 \cdot g(x) 4 = |x| 3\sqrt{x} 4$. Para que exista $(g \circ f)(x) \in \mathbb{R}$, devemos ter $x \ge 0$. Então: $D(g \circ f) = \{x \in \mathbb{R} \mid x \ge 0\}$.
- **431.** Sejam $f(x) = \sqrt{x-1}$ e $g(x) = 2x^2 5x + 3$. Determine os domínios das funções $f \circ g$ e $g \circ f$.
- **432.** Sejam as funções $f(x) = \frac{x+1}{x-2}$ definida para todo x real e $x \ne 2$ e g(x) = 2x + 3 definida para todo x real. Forneça:
 - a) o domínio e a lei que define $f \circ g$:
 - b) o domínio e a lei que define $g \circ f$.
- **433.** Sejam as funções reais f(x) = 2x + 1, $g(x) = x^2 1$ e h(x) = 3x + 2. Obtenha a lei que define $(h \circ g) \circ f$.
- **434.** Sejam as funções reais f(x) = 1 x, $g(x) = x^2 x + 2$ e h(x) = 2x + 3. Obtenha a lei que define $h \circ (g \circ f)$.
- **435.** Sendo $f(x) = \sqrt{1 4x^2} e g(\theta) = sen 2\theta$, encontre os valores de θ para os quais $f \circ g$ se anula. **Observação:** $f \circ g$ significa f composta com g.
- 436. Considere as funções

$$f(x) = 2x + 3$$
$$g(x) = ax + b.$$

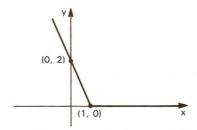
Determine o conjunto C, dos pontos $(a, b) \in \mathbb{R}^2$ tais que $f \circ g = g \circ f$.

437. Dadas as funções f(x) = 2x + m e g(x) = ax + 2, qual é a relação que a e m devem satisfazer para que se tenha $(f \circ g)(x) = (g \circ f)(x)$?

- 438. Julgue os itens abaixo.
 - a) A figura abaixo é gráfico de uma função definida para y = f(x).



- b) Se $f(x) = x^2 2x + 1$, então f(a + 1) = f(1 a).
- c) Se $A = \{1, 2, 3\}$ e $B = \{1, 4, 7\}$, pode-se afirmar que o número de funções de A para B é igual a 3.
- d) A representação gráfica de $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = |x-I| (x-I) é o gráfico abaixo.



- e) Para todo x > 0 temos que, se $f(x) = \frac{1}{x}$, então f(x) < 1.
- f) Se f é uma função definida para todo inteiro tal que f(0) = 1, f(n + 1) = f(n) + 3, então f(300) = 901.
- **439.** Dadas $f(x) = 3 e g(x) = x^2$, determine f(g(x)).
- **440.** Se $f(x) = \frac{1}{1-x}$, determine $(f \circ [f \circ f])(x)$.
- **441.** Dadas as funções f, g e h, de |R| em |R|, definidas por f(x) = 3x, $g(x) = x^2 2x + 1$ e h(x) = x + 2, obtenha $((h \circ f) \circ g)$ (2).
- **442.** Dada a aplicação $f: Q \to Q$ definida por $f(x) = x^2 2$, qual é o valor de x tal que f(x) = f(x + 1)?
- **443.** Sejam f e g funções de |R em |R tais que f(x) = ax + b e g(x) = cx + d. Determine a relação entre a, b, c e d, de modo que $f \circ g = g \circ f$.

444. Sejam as funções reais f(x) = 3x - 5 e $(f \circ g)(x) = x^2 - 3$. Determine a lei da função g.

Solução

Se f(x) = 3x - 5, então trocando-se x por g(x) temos: $(f \circ g)(x) = f(g(x)) = 3 \cdot g(x) - 5$ mas é dado que: $(f \circ g)(x) = x^2 - 3$, então $3 \cdot g(x) - 5 = x^2 - 3$ ou seja: $g(x) = \frac{x^2 + 2}{3}$.

- 445. Sejam as funções reais f(x) = 2x + 7 e $(f \circ g)(x) = x^2 2x + 3$. Determine a lei da função g.
- **446.** Sejam as funções reais g(x) = 3x 2 e $(f \circ g)(x) = 9x^2 3x + 1$. Determine a lei da função f.

Solução

Se $(f \circ g)(x) = 9x^2 - 3x + 1$, então $f(g(x)) = 9x^2 - 3x + 1$. Como g(x) = 3x - 2, decorre $x = \frac{g(x) + 2}{3}$ e então: $f(g(x)) = 9\left[\frac{g(x) + 2}{3}\right]^2 - 3 \cdot \left[\frac{g(x) + 2}{3}\right] + 1 = [g(x)]^2 + 4g(x) + 4 - g(x) - 2 + 1 =$ $= [g(x)]^2 + 3 \cdot g(x) + 3$; logo, $f(x) = x^2 + 3x + 3$.

- **447.** Sejam as funções reais g(x) = 2x 3 e $(f \circ g)(x) = 2x^2 4x + 1$. Determine a lei da função f.
- 448. Sejam as funções reais g(x) = 2x + 3 definida para todo x real e $(f \circ g)(x) = \frac{2x + 5}{x + I}$ definida para todo x real. Determine a lei da função f.
- **449.** Se $f: \mathbb{R} \to \mathbb{R}$ é da forma f(x) = ax + b e verifica f(f(x)) = x + l para todo x real, calcule os valores de a e b.
- 450. Considere as funções

$$f: |R \rightarrow |R$$

 $x \mapsto 2x + b$ $g: |R \rightarrow |R$
 $x \mapsto x^2$

em que b é uma constante. Conhecendo a composta

$$g \circ f : |R \rightarrow |R$$

 $x \mapsto g(f(x)) = 4x^2 - 12x + 9$

calcule o valor de b.

- **451.** Se $f(x + I) = \frac{3x + 5}{2x + I} \left(x \neq \frac{-I}{2} \right)$, qual é o domínio da função f(x) no conjunto dos números reais?
- **452.** Sejam as funções reais, g(x) = 2x + 3 definida para todo x real e $g(f(x)) = \frac{2x + 5}{x + 1}$ definida para todo x real e $x \neq -1$. Calcule $f\left(\frac{-12}{15}\right)$.
- **453.** Se $g(f(x)) = x^2 + 13x + 42$ e $g(x) = x^2 x$, determine o termo independente de "x" na expressão de f(x), sabendo que f(x) é um polinômio com coeficientes positivos.
- **454.** Sejam $f \in g$ funções de \mathbb{R} em \mathbb{R} , definidas por $f(x) = 2x + k \in g(x) = -x + t$. Sabendo que $f(f(x)) = 4x 3 \in f(g(x)) = g(f(x))$, determine:
 - a) os valores de k e t;
 - b) os números reais x, tais que $\frac{f(x)}{g(x)} \le 0$.
- **455.** Sejam f e g funções reais definidas por

$$f(x) \, = \, \begin{cases} x^2 \, + \, 2x \, + \, 4 & \text{ se } \quad x \, \geqslant \, 1 \\ 3x \, + \, 4 & \text{ se } \quad x \, < \, 1 \end{cases} \quad e \quad g(x) \, = \, x \, - \, 3 \, .$$

Obtenha a lei que define $f \circ g$.

Solução

Fazendo g(x) = y, temos $(f \circ g)(x) = f(g(x)) = f(y)$. Temos de examinar dois casos:

1°)
$$y \ge 1$$

 $y \ge 1 \iff g(x) \ge 1 \iff x - 3 \ge 1 \iff x \ge 4$
 $y \ge 1 \implies f(y) = y^2 + 2y + 4 \implies f(g(x)) = (g(x))^2 + 2 \cdot g(x) + 4 \implies (f \circ g)(x) = (x - 3)^2 + 2(x - 3) + 4 = x^2 - 4x + 7.$

2?)
$$y < 1$$

 $y < 1 \Leftrightarrow g(x) < 1 \Leftrightarrow x - 3 < 1 \Leftrightarrow x < 4$
 $y < 1 \Rightarrow f(y) = 3y + 4 \Rightarrow f(g(x)) = 3 \cdot g(x) + 4 \Rightarrow$
 $\Rightarrow (f \circ g)(x) = 3(x - 3) + 4 = 3x - 5$

Conclusão:
$$(f \circ g)(x) = \begin{cases} x^2 - 4x + 7, & \text{se } x \geqslant 4 \\ 3x - 5, & \text{se } x < 4. \end{cases}$$

456. Sejam f e g as funções reais definidas por

$$f(x) \, = \, \begin{cases} x^2 - 4x \, + \, 3 & \text{se} \quad x \, \geqslant \, 2 \\ 2x - 3 & \text{se} \quad x \, < \, 2 \end{cases} \quad e \quad g(x) \, = \, 2x \, + \, 3.$$

Obtenha as leis que definem $f \circ g$ e $g \circ f$.

457. Sejam as funções reais f e g definidas por

$$f(x) = \begin{cases} x^2 + 2 & \text{se} & x \leqslant -1\\ \frac{1}{x - 2} & \text{se} & -1 < x < 1\\ 4 - x^2 & \text{se} & x \geqslant 1 \end{cases}$$

$$e g(x) = 2 - 3x$$
.

Obtenha as leis que definem $f \circ g$ e $g \circ f$.

458. Sejam as funções reais f e g definidas por

$$f(x) \ = \begin{cases} 4x-3 & \text{se} \quad x\geqslant 0 \\ x^2-3x+2 & \text{se} \quad x<0 \end{cases} \quad \text{e} \quad g(x) \ = \begin{cases} x+1 & \text{se} \quad x>2 \\ 1-x^2 & \text{se} \quad x\leqslant 2 \end{cases}.$$

Obtenha as leis que definem $f \circ g$ e $g \circ f$.

459. Sejam as funções reais $g \in f \circ g$ definidas por g(x) = 2x - 3 e

$$(f \circ g)(x) \ = \begin{cases} 4x^2 - 6x - 1 & \text{se} \quad x \geqslant 1 \\ 4x + 3 & \text{se} \quad x < 1 \end{cases}.$$

Obtenha a lei que define f.

II. Função sobrejetora

140. Uma função f de A em B é sobrejetora se, e somente se, para todo pertencente a B existe um elemento x pertencente a A tal que

$$f(x) = y$$
.

Em símbolos:

f:
$$A \to B$$

f é sobrejetora $\Leftrightarrow \forall y, y \in B, \exists x, x \in A \mid f(x) = y$

Notemos que $f: A \rightarrow B$ é sobrejetora se, e somente se, Im(f) = B.

$$f: A \to B$$

 $f \in \text{sobrejetora} \iff \text{Im}(f) = B$

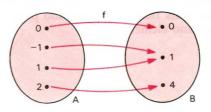
Em lugar de dizermos "f é uma função sobrejetora de A em B", poderemos dizer "f é uma sobrejeção de A em B".

Exemplos

1°) A função f de

 $A = \{-1, 0, 1, 2\}$ em $B = \{0, 1, 4\}$ definida pela lei $f(x) = x^2$ é sobrejetora, pois, para todo elemento $y \in B$, existe o elemento $x \in A$ tal que $y = x^2$.

Observemos que para todo elemento de B converge pelo menos uma flecha.



2°) A função f de A = |R| em $B = \{y \in |R| | y \ge 1\}$ definida por $f(x) = x^2 + 1$ é sobrejetora, pois, para todo $y \in B$, existe $x \in A$ tal que $y = x^2 + 1$, bastando para isso tomar $x = \sqrt{y - 1}$ ou $x = -\sqrt{y - 1}$.

III. Função injetora

141. Uma função f de A em B é injetora se, e somente se, quaisquer que sejam x_1 e x_2 de A, se $x_1 \neq x_2$, então $f(x_1) \neq f(x_2)$.

Em símbolos:

f: A
$$\rightarrow$$
 B
f é injetora \implies $(\forall x_1, x_1 \in A, \forall x_2, x_2 \in A)(x_1 \neq x_2 \implies f(x_1) \neq f(x_2))$

Notemos que a definição proposta é equivalente a: uma função f de A em B é injetora se, e somente se, quaisquer que sejam x_1 e x_2 de A, se $f(x_1) = f(x_2)$, então $x_1 = x_2$.

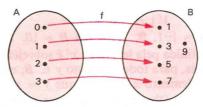
f: A
$$\rightarrow$$
 B
f \(\'equiv \text{injetora}\) \Leftrightarrow $(\forall x_1, x_1 \in A, \forall x_2, x_2 \in A)(f(x_1) = f(x_2) \infty x_1 = x_2)$

Em lugar de dizermos "f é uma função injetora de A em B", poderemos dizer "f é uma injeção de A em B".

Exemplos

1°.) A função f de $A = \{0, 1, 2, 3\}$ em $B = \{1, 3, 5, 7, 9\}$ definida pela lei f(x) = 2x + 1 é injetora,

pois dois elementos distintos de A têm como imagem dois elementos distintos de B. Observemos que não existem duas ou mais flechas convergindo para um mesmo elemento de B.



- 2°) A função de $A = |\mathbb{N}|$ em $B = |\mathbb{N}|$ definida por f(x) = 2x é injetora, pois, quaisquer que sejam x_1 e x_2 de $|\mathbb{N}|$, se $x_1 \neq x_2$, então $2x_1 \neq 2x_2$.
- 3°.) A função de $A = \mathbb{R}^*$ em $B = \mathbb{R}$ definida por $f(x) = \frac{I}{x}$ é injetora, pois, quaisquer que sejam x_1 e x_2 de \mathbb{R}^* , se $x_1 \neq x_2$, então $\frac{I}{x_1} \neq \frac{I}{x_2}$.

IV. Função bijetora

142. Uma função f de A em B é bijetora se, e somente se, f é sobrejetora e injetora.

Em símbolos:

f:
$$A \to B$$

f é bijetora \implies f é sobrejetora e injetora

A definição acima é equivalente a: uma função f de A em B é bijetora se, e somente se, para qualquer elemento y pertencente a B, existe um único elemento x pertencente a A tal que f(x) = y.

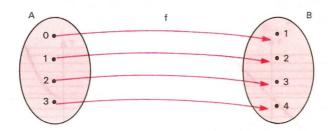
f:
$$A \to B$$

f é bijetora $\Leftrightarrow \forall y, y \in B, \exists |x, x \in A| f(x) = y$

Em lugar de dizermos "f é uma função bijetora de A em B", poderemos dizer "f é uma bijeção de A em B".

Exemplos

1°) A função f de $A = \{0, 1, 2, 3\}$ em $B = \{1, 2, 3, 4\}$ definida por f(x) = x + 1 é bijetora



pois f é sobrejetora e injetora, isto é, para todo elemento $y \in B$, existe um único elemento $x \in A$, tal que y = x + I. Observemos que para cada elemento de B converge uma só flecha.

- 2°.) A função f de A = |R| em B = |R| definida por f(x) = 3x + 2 é bijetora, pois:
- I) qualquer que seja $y \in \mathbb{R}$, existe $x \in \mathbb{R}$ tal que y = 3x + 2, basta tomarmos $x = \frac{y-2}{3}$. Logo, f é sobrejetora;
- II) quaisquer que sejam x_1 e x_2 de |R|, se $x_1 \neq x_2$, então $3x_1 + 2 \neq 3x_2 + 2$, isto é, f é injetora.

Observação

Observemos que existem funções que não são sobrejetoras nem injetoras. Assim, por exemplo, a função de |R| em |R| definida por f(x) = |x|:

- I) dado $y \in \mathbb{R}_{+}^{*}$, não existe $x \in \mathbb{R}$ tal que y = |x|, portanto f não é sobrejetora;
- II) Existem x_1 e x_2 em $|R, x_1$ e x_2 opostos (e portanto $x_1 \neq x_2$) tais que $|x_1| = |x_2|$, isto é, f não é injetora.

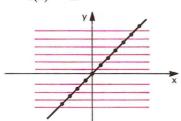
143. Reconhecimento através do gráfico

Pela representação cartesiana de uma função f podemos verificar se f é injetora ou sobrejetora ou bijetora. Para isso, basta analisarmos o número de pontos de interseção das retas paralelas ao eixo dos x, conduzidas por cada ponto (0, y) em que $y \in B$ (contradomínio de f).

1º) Se cada uma dessas retas cortar o gráfico em um só ponto ou não cortar o gráfico, então a função é *injetora*.

Exemplos

a) $f: |R \rightarrow |R|$ f(x) = x



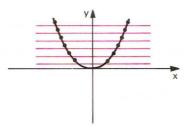
b) $f: |R_+ \rightarrow |R|$ $f(x) = x^2$

2º) Se cada uma das retas cortar o gráfico em um ou mais pontos, então a função é sobrejetora.

Exemplos

a) $f: |R \rightarrow |R|$ f(x) = x - 1

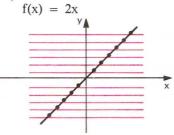
b) $f: |R \rightarrow |R_+|$ $f(x) = x^2$



 3°) Se cada uma dessas retas cortar o gráfico em um só ponto, então a função é bijetora.

Exemplos

a)
$$f: \mathbb{R} \to \mathbb{R}$$



b)
$$f: |R \rightarrow R|$$

$$f(x) = x \cdot |x|$$

Resumo

Dada a função f de A em B, consideram-se as retas horizontais por (0, y) com $y \in B$:

- 1º) se nenhuma reta corta o gráfico mais de uma vez, então f é injetora.
- 2º) se toda reta corta o gráfico, então f é sobrejetora.
- 3º) se toda reta corta o gráfico em um só ponto, então f é bijetora.

144. Composta de sobrejetoras

Teorema

Se duas funções f de A em B e g de B em C são sobrejetoras, então a função composta $g \circ f$ de A em C é também sobrejetora.

Demonstração

A função g é sobrejetora; então, para todo z de C, existe y em B tal que g(y) = z e a função f é sobrejetora, isto é, dado y em B, existe x em A tal que f(x) = y.

Logo, para todo z em C, existe x em A tal que

$$z = g(y) = g(f(x)) = (g \circ f)(x)$$

o que prova que $g \circ f$ é sobrejetora.

145. Composta de injetoras

Teorema

Se duas funções f de A em B e g de B em C são injetoras, então a função composta $g \circ f$ de A em C é também injetora.

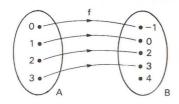
Demonstração

Consideremos x_1 e x_2 dois elementos quaisquer de A e suponhamos que $(g \circ f)$ $(x_1) = (g \circ f)(x_2)$, isto é, $g(f(x_1)) = g(f(x_2))$. Como g é injetora, da última igualdade resulta que $f(x_1) = f(x_2)$; como f é também injetora, vem $x_1 = x_2$; portanto, $g \circ f$ é injetora.

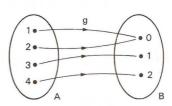
EXERCÍCIOS CONSULT A SEC

460. Indique qual das funções abaixo é injetora, sobrejetora ou bijetora?

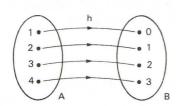
a)



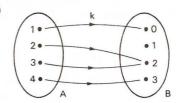
b)



c)

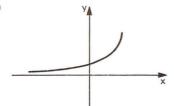


d)



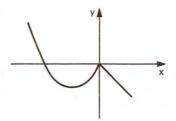
461. Para as funções em IR abaixo representadas, qual é injetora? E sobrejetora? E bijetora?

a)

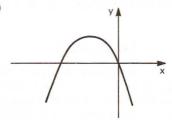


b)

c)



d)



- 462. Nas funções seguintes classifique em:
 - I) injetora

- III) bijetora
- II) sobrejetora
- IV) não é sobrejetora nem injetora
- a) $f: \mathbb{R} \to \mathbb{R}$
- tal que

tal que

tal que

- f(x) = 2x + 1
- b) g: $|R| \rightarrow |R|_+$
 - $\rightarrow \mathbb{R}_+$ tal que \mathfrak{g} $\rightarrow \mathbb{R}_+$ tal que \mathfrak{g}
- $g(x) = 1 x^2$
- c) h: $IR \rightarrow IR_+$
- h(x) = |x 1|
- d) m: $|N \rightarrow N|$ tal que
 - tal que m(x) = 3x + 2
- e) n: $\mathbb{R} \to \mathbb{Z}$
- tal que n(x) = [x]
- f) p: $|R^* \rightarrow |R^*$
- $p(x) = \frac{1}{x}$
- g) q: $|R \rightarrow R|$ tal que
- $q(x) = x^3$
- h) $r: iR \rightarrow IR$
- $r(x) = |x| \cdot (x-1)$
- **463.** Determine o valor de b em $B = \{y \in |\mathbb{R} \mid y \ge b\}$ de modo que a função f de $|\mathbb{R}|$ em B, definida por $f(x) = x^2 4x + 6$, seja sobrejetora.
- **464.** Determine o maior valor de a em $A = \{x \in |\mathbb{R} \mid x \leq a\}$ de modo que a função f de A em $|\mathbb{R}$, definida por $f(x) = 2x^2 3x + 4$, seja injetora.
- **465.** Seja a função de $A = \{x \in |\mathbb{R}| -5 \le x < 2\}$ em $B \subset |\mathbb{R}$, definida por f(x) = |x + 3| 2. Se f é sobrejetora, determine B.
- **466.** Determine o conjunto B de modo que a função $f: [-1, 2] \rightarrow B$, definida por f(x) = |2x 3|, seja sobrejetiva. Esta função é injetiva? Justifique.
- 467. Nas funções seguintes, classifique em:
 - I) injetora

- III) bijetora
- II) sobrejetora
- IV) não é injetora nem sobrejetora

a)
$$f: \mathbb{R} \to \mathbb{R}$$

$$f(x) = \begin{cases} x^2 & \text{se } x \ge 0 \\ x & \text{se } x < 0 \end{cases}$$

d)
$$m: |R \rightarrow |R|$$

$$m(x) = \begin{cases} 4 - x^2 & \text{se } x \le 1 \\ x^2 - 6x + 8 & \text{se } x > 1 \end{cases}$$

b)
$$g: \mathbb{R} \to \mathbb{R}$$

$$g(x) = \begin{cases} x - 1 & \text{se } x \ge 1 \\ 0 & \text{se } -1 < x < 1 \\ x + 1 & \text{se } x \le -1 \end{cases}$$

e) n: $|N \rightarrow N|$

$$n(x) = \begin{cases} x & \text{se } x \text{ \'e par} \\ \frac{x+1}{2} & \text{se } x \text{ \'e impar} \end{cases}$$

c) h: $|R \rightarrow R|$

$$h(x) = \begin{cases} 3x - 2 & \text{se } x \geqslant 2 \\ x - 2 & \text{se } x < 2 \end{cases}$$

f) p: $|R \rightarrow Q|$

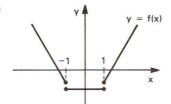
$$p(x) = \begin{cases} 2x & \text{se } x \in \mathbb{Q} \\ [x] & \text{se } x \in (\mathbb{R} - \mathbb{Q}) \end{cases}$$

468. Classifique em injetora, sobrejetora ou bijetora a aplicação $f: \mathbb{N} \to \mathbb{N}$ definida por

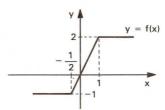
$$f(n) = \begin{cases} \frac{n}{2} & \text{se } n \text{ \'e par} \\ \frac{n+1}{2} & \text{se } n \text{ \'e impar} \end{cases}$$

469. Observando os gráficos, julgue os itens seguintes.

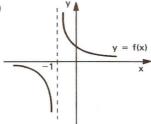
(I)



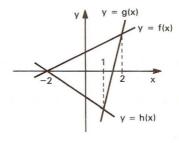
(II)



(III)

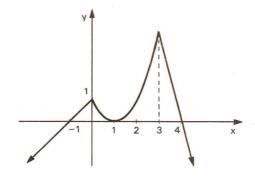


(IV)



- a) O domínio da função em (I) é $\{x \in \text{reais} | x \neq -I \text{ ou } x \neq I\}.$
- b) A imagem da função em (II) é $\{y \in \text{reais } |-1 < y < 2\}$.
- c) A função em (III) é decrescente no intervalo $(-1, +\infty)$.
- d) Com relação a (IV), podemos dizer que $h(x) < g(x) \le f(x)$ para $1 < x \le 2$.
- e) A função em (I) é injetora.
- f) Em (II) f(0) = 0 e $f(-1) = \frac{-1}{2}$.
- g) Em (III) a função é negativa para x < -1 e positiva para x > -1.

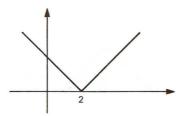
470. Com relação ao gráfico de uma função y = f(x), representado abaixo, pode-se afirmar que:



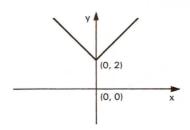
- a) o domínio da função é o conjunto dos números reais.
- b) a imagem da função é o conjunto dos números reais.
- c) a função é crescente no intervalo $(-\infty, 1]$.
- d) a função é injetora em todo o seu domínio.
- e) f(1) = 0 e f(5) < 0.

f)
$$\left(\frac{1}{2}\right) < 1$$
 e $f\left(-\frac{1}{2}\right) < 1$.

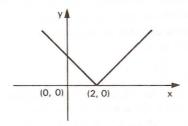
- g) sabendo que no intervalo [0, 3] a curva representa um arco de parábola, podemos concluir que a equação dessa parábola é $y = x^2 2x + 1$.
- h) a semi-reta correspondente a $x \le 0$ tem inclinação -1.
- **471.** Sendo a função real f(x) = |x-2| + |x|, pode-se afirmar:
 - a) O gráfico da função é:



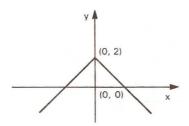
- b) A função cresce no intervalo $[2, +\infty[$.
- c) f(x) = 2x 2, $\forall x \in R$.
- d) O conjunto imagem da função é $\{y \in R, y \ge 2\}$.
- e) A função não é injetora.
- f) O conjunto domínio da função é R.
- **472.** Considere a função definida por $y = f(x) = 2 |x|, x \in \mathbb{R}$. Assinale as proposições verdadeiras e as proposições falsas nos itens abaixo.
 - a) f é sobrejetiva.
 - b) f não é injetiva.
 - c) A função pode ser representada pelo gráfico:



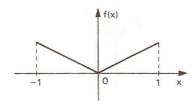
d) A função pode ser representada pelo gráfico:



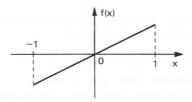
e) A função pode ser representada pelo gráfico:



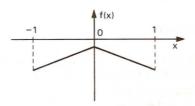
- **473.** A função $f: A \to B$ é dada por $f(x) = \sqrt{1-x^2}$.
 - a) Determine o domínio de f, isto é, $A = \{x \in R \text{ tal que existe } f(x)\}.$
 - b) Determine a imagem de f, isto é, B = f(A).
 - c) A função f é injetora? Por quê?
 - d) Trace o gráfico da função f.
- **474.** Existem funções $f: \mathbb{R} \to \mathbb{R}$ que satisfazem a propriedade (I) f(x) = f(-x), para todo $x \in \mathbb{R}$. Assinale as proposições verdadeiras e as proposições falsas:
 - a) Se uma função f verifica (I), então f é injetora.
 - b) condição (1) é válida para a função $f(x) = 3x^5$, $x \in \mathbb{R}$.
 - c) O gráfico abaixo representa, no intervalo [-1, 1], uma função que verifica (I).



 d) O gráfico abaixo representa, no intervalo [-1, 1], uma função para a qual vale (I).



e) O gráfico abaixo representa uma função que satisfaz a propriedade (I).



475. a) Defina função bijetora.

b) Demonstre que f, definida no intervalo 0 < x < s (s > 0) do seguinte modo:

$$f(x) = \frac{2x - s}{x(s - x)}$$

é uma função bijetora desse intervalo nos reais.

476. Sejam |N o conjunto dos números naturais e f: |N → |N uma função que satisfaz as propriedades:

- a) dado qualquer $m \in \mathbb{N}$ existe $n \in \mathbb{N}$ tal que $f(n) \ge m$.
- b) $A_r = \{s \in \mathbb{N}; s \leqslant f(r)\}$ está contido no conjunto imagem de f, para todo $f \in \mathbb{N}$.

Mostre que f é sobrejetora.

477. Sejam as funções: f de A em B, definida por y = f(x); identidade em A, anotada por I_A , de A em A e definida por $I_A(x) = x$; identidade em B, anotada por I_B , de B em B e definida por $I_B(x) = x$. Prove:

$$f \circ I_A = f$$
 e $I_B \circ f = f$.

478. As funções I_A e I_B do exercício anterior são iguais? Justifique.

479. Os conjuntos A e B têm, respectivamente, m e n elementos. Considera-se uma função f: A → B. Qual a condição sobre m e n para que f possa ser injetora? E para f ser sobrejetora? E bijetora?

- **480.** Quantas são as injeções de $A = \{a, b\}$ em $B = \{c, d, e, f\}$?
- **481.** Quantas são as sobrejeções de $A = \{a, b, c\}$ em $B = \{d, e\}$?
- 482. Mostre com um exemplo que a composta de uma injeção com uma sobrejeção pode não ser nem injetora nem sobrejetora.
- **483.** Sejam $f, g : \mathbb{R} \to \mathbb{R}$ duas funções tais que:
 - a) $g \circ f : \mathbb{R} \to \mathbb{R}$ é injetora. Prove que f é injetora.
 - b) $g \circ f : \mathbb{R} \to \mathbb{R}$ é sobrejetora. Prove que g é sobrejetora.

V. Função inversa

146. Exemplo preliminar

Dados os conjuntos $A = \{1, 2, 3, 4\}$ e $B = \{1, 3, 5, 7\}$, consideremos a função f de A em B definida por f(x) = 2x - I.

Notemos que a função f é bijetora formada pelos pares ordenados

$$f = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$$

em que
$$D(f) = A$$
 e $Im(f) = B$.

A relação

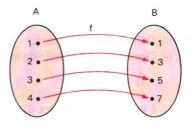
 $f^{-l} = \{(y, x) | (x, y) \in f\}$, inversa de f, é também uma função, pois f é uma bijeção de A em B, isto é, para todo $y \in B$ existe um único $x \in A$ tal que $(y, x) \in f^{-l}$.

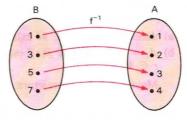
A função f^{-1} é formada pelos pares ordenados

$$f^{-1} = \{(1, 1), (3, 2), (5, 3), (7, 4)\}$$

em que

$$D(f^{-1}) = B$$
 e $Im(f^{-1}) = A$.





Observemos que a função f é definida pela sentença y=2x-1, e f^{-1} é definida pela sentença $x=\frac{y+1}{2}$, isto é:

- 1º) f leva cada elemento $x \in A$ até o $y \in B$ tal que y = 2x 1
- 2°) f^{-1} leva cada elemento $y \in B$ até o $x \in A$ tal que $x = \frac{y+1}{2}$.

147. Teorema

Seja $f: A \to B$. A relação f^{-1} é uma função de B em A se, e somente se, f é bijetora.

Demonstração

1.ª parte: Se f^{-1} é uma função de B em A, então f é bijetora.

- a) Para todo $y \in B$ existe um $x \in A$ tal que $f^{-1}(y) = x$, isto é, $(y, x) \in f^{-1}$, ou ainda, $(x, y) \in f$. Assim f é sobrejetora.
- b) Dados $x_1 \in A$ e $x_2 \in A$, com $x_1 \neq x_2$, se tivermos $f(x_1) = f(x_2) = y$ resultará $f^{-1}(y) = x_1$ e $f^{-1}(y) = x_2$, o que é absurdo pois y só tem uma imagem em f^{-1} . Assim $f(x_1) \neq f(x_2)$ e f é injetora.

2ª parte: Se f é bijetora, então f^{-1} é uma função de B em A.

- a) Como f é sobrejetora, para todo $y \in B$ existe um $x \in A$ tal que $(x, y) \in f$; portanto, $(y, x) \in f^{-1}$.
 - b) Se $y \in B$, para duas imagens x_1 e x_2 em f^{-1} , vem:

$$(y, x_1) \in f^{-1} \ e \ (y, x_2) \in f^{-1}$$

portanto:

$$(x_1, y) \in f e (x_2, y) \in f.$$

Como f é injetora, resulta $x_1 = x_2$.

148. Definição

Se f é uma função bijetora de A em B, a relação inversa de f é uma função de B em A que denominamos função inversa de f e indicamos por f^{-1} .

Observações

1ª) Os pares ordenados que formam f^{-1} podem ser obtidos dos pares ordenados de f, permutando-se os elementos de cada par, isto é:

$$(x, y) \in f \iff (y, x) \in f^{-1}.$$

2ª) Pela observação anterior, temos:

$$(x, y) \in f \iff (y, x) \in f^{-1}.$$

Agora, se considerarmos a função inversa de f^{-1} , teremos:

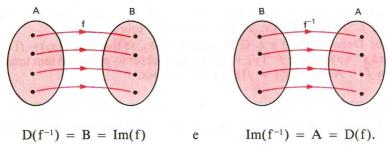
$$(y, x) \in f^{-1} \iff (x, y) \in (f^{-1})^{-1}$$

isto é, a inversa de f^{-1} é a própria função f:

$$(f^{-1})^{-1} = f.$$

Podemos assim afirmar que f e f^{-1} são inversas entre si, ou melhor, uma é inversa da outra.

3ª) O domínio da função f^{-1} é B, que é a imagem da função f. A imagem da função f^{-1} é A, que é o domínio da função f.



149. Determinação da função inversa

Vimos no exemplo preliminar que, se a função f é definida pela sentença aberta y = 2x - I, então a função inversa f^{-I} é definida pela sentença $x = \frac{y + I}{2}$.

Observemos, por exemplo, que x = 2 e y = 3 satisfazem a condição y = 2x - 1 e também $x = \frac{y + 1}{2}$. Isso não quer dizer que o par ordenado (2, 3) pertença a f e a f^{-1} . De fato:

$$(2, 3) \in f$$
 e $(3, 2) \in f^{-1}$.

As sentenças abertas y = 2x - 1 e $x = \frac{y + 1}{2}$ não especificam qual (x? ou y?) é o primeiro termo do par ordenado.

Ao construirmos o gráfico cartesiano da função f, colocamos x em abscissas e y em ordenadas, isto é:

$$f = \{(x, y) \in A \times B \mid y = 2x - 1\}$$

e ao representarmos no mesmo plano cartesiano o gráfico de f^{-l} , como o conjunto

$$f^{-1} = \{(y, x) \in B \times A \mid x = \frac{y + 1}{2}\},\$$

devemos ter y em abscissa e x em ordenada.

A fim de que possamos convencionar que:

- 1º) dada uma sentença aberta que define uma função, x representa sempre o primeiro termo dos pares ordenados e
- 2°) dois gráficos de funções distintas podem ser construídos no mesmo plano cartesiano com x em abscissas e y em ordenadas justifica-se a seguinte regra prática.

Regra prática

Dada a função bijetora f de A em B, definida pela sentença y=f(x), para obtermos a sentença aberta que define f^{-1} , procedemos do seguinte modo:

- 1°) na sentença y = f(x) fazemos uma mudança de variável, isto é, trocamos x por y e y por x, obtendo x = f(y);
- 2°) transformamos algebricamente a expressão x = f(y), expressando y em função de x para obtermos $y = f^{-1}(x)$.

Exemplos

1°) Qual é a função inversa da função f bijetora em |R| definida por f(x) = 3x + 2?

A função dada é: f(x) = y = 3x + 2.

Aplicando a regra prática:

- I) permutando as variáveis: x = 3y + 2
- II) expressando y em função de x:

$$x = 3y + 2 \implies 3y = x - 2 \implies y = \frac{x - 2}{3}$$
.

Resposta: É a função f^{-1} em IR definida por $f^{-1}(x) = \frac{x-2}{3}$.

2°) Qual é a função inversa da função f bijetora em \mathbb{R} definida por $f(x) = x^3$?

A função dada é $f(x) = y = x^3$.

Aplicando a regra prática, temos: $x = y^3 \implies y = \sqrt[3]{x}$.

Resposta: É a função f^{-1} em |R| definida por $f^{-1}(x) = \sqrt[3]{x}$.

150. Propriedade dos gráficos de f e f⁻¹

Os gráficos cartesianos de f e f^{-1} são simétricos em relação à bissetriz dos quadrantes I e 3 do plano cartesiano.

Observemos inicialmente que, se $(a, b) \in f$, então $(b, a) \in f^{-1}$.

Para provarmos que os pontos P(a, b) e Q(b, a) são simétricos em relação à reta r de equação y = x (bissetriz dos quadrantes l e 3), devemos provar que a reta que passa pelos pontos P e Q é perpendicular à reta r e que as distâncias dos pontos P e Q à reta r são iguais.

O ponto M, médio do segmento PQ, tem coordenadas $\left(\frac{a+b}{2}, \frac{a+b}{2}\right)$ e portanto M pertence à reta r. Como M é médio do segmento PQ, isto é, $\overline{MP} = \overline{MQ}$, $M \in r$, está então provado que os pontos P e Q equidistam da reta r.

Para provarmos que a reta \overrightarrow{PQ} é perpendicular à reta r, consideremos o ponto R(c, c) da reta r, distinto de M, e provemos que o triângulo PMR é retângulo em M.

Calculando a medida dos lados do triângulo PMR, encontramos:

$$\frac{\overline{PM}^2}{\overline{PM}^2} = \left(a - \frac{a+b}{2}\right)^2 + \left(b - \frac{a+b}{2}\right)^2 = \left(\frac{a-b}{2}\right)^2 + \left(\frac{b-a}{2}\right)^2 = 2\left(\frac{a-b}{2}\right)^2$$

$$\overline{MR}^2 = \left(\frac{a+b}{2} - c\right)^2 + \left(\frac{a+b}{2} - c\right)^2 = 2\left(\frac{a+b}{2} - c\right)^2$$

$$\overline{PR}^2 = (a-c)^2 + (b-c)^2$$

e observemos que

$$\begin{split} \overline{P}\overline{M}^2 + \overline{M}\overline{R}^2 &= 2\bigg(\frac{a-b}{2}\bigg)^2 + 2\bigg(\frac{a+b}{2}-c\bigg)^2 = \frac{a^2-2ab+b^2}{2} + \frac{a^2+2ab+b^2}{2} - \\ &-2(a+b)\cdot c + 2c^2 = \frac{a^2+b^2-2ac-2bc+2c^2}{P} = (a^2-2ac+c^2) + (b^2-2bc+c^2) = \\ &= (a-c)^2 + (b-c)^2 = \overline{P}\overline{R}^2. \end{split}$$

Exemplos

Vamos construir no mesmo diagrama os gráficos de duas funções inversas entre si:

1°)
$$f(x) = 2x - 4$$
 e $f^{-1}(x) = \frac{x + 4}{2}$

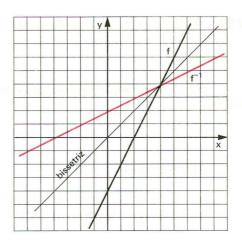
2°)
$$f(x) = x^2$$
 $e^{-1}(x) = \sqrt{x}$

3°)
$$f(x) = x^3$$
 $e^{-1}(x) = \sqrt[3]{x}$

1°)
$$y = 2x - 4$$
 $y = \frac{x + 4}{2}$

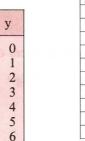
X	y
-4	-12
-3	-10
-2	-8
-1	-6
0	-4
1	-2
2	0
3	2
4	4

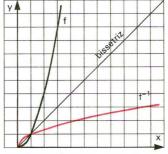
х	у
-12	-4
-10	-3
-8	-2
-6	-1
-4	0
-2	-2
0	2
2	3
4	4



2°)
$$y = x^2$$
 $y = \sqrt{x}$

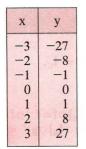
X	у	X	у
0	0	0	
1	1	1	
2	4	4	
3	1 4 9	4 9	
4	16	16	
5	25	25	
1 2 3 4 5 6	36	36	
Design !		A STATE OF THE STA	

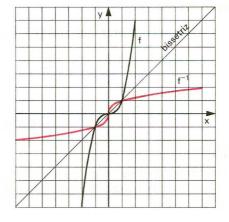




3°)
$$y = x^3$$
 $y = \sqrt[3]{x}$

X	у
-27	-3
-8	-2
-1	-1
0	0
1	1
1 8	2
27	3





151. A composta de funções inversas entre si

Teorema

Seja f uma função bijetora de A em B. Se f^{-l} é a função inversa de f, então:

$$f^{\text{--}1} \circ f \, = \, I_A \quad e \quad f \circ f^{\text{--}1} \, = \, I_B.$$

Demonstração

$$\forall x \in A, (f^{-1} \circ f)(x) = f^{-1}(f(x)) = f^{-1}(y) = x$$

 $\forall y \in B, (f \circ f^{-1})(y) = f(f^{-1}(y)) = f(x) = y.$

152. A inversa da composta

Teorema

Se as funções f de A em B e g de B em C são bijetoras, então:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$

Demonstração

Observemos inicialmente: se as funções f de A em B e g de B em C são bijetoras, então a função composta $g \circ f$ de A em C é bijetora; logo, existe a função inversa $(g \circ f)^{-1}$ de C em A.

Queremos provar que $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$; então basta provar que

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = I_A \quad e \quad (g \circ f) \circ (f^{-1} \circ g^{-1}) = I_C.$$

Notemos que

$$f^{-1} \circ f = I_A$$
, $f \circ f^{-1} = I_B$, $g^{-1} \circ g = I_B$ e $g \circ g^{-1} = I_C$.

Então:

$$\begin{array}{l} (f^{-1}\circ g^{-1})\circ (g\circ f)=[(f^{-1}\circ g^{-1})\circ g]\circ f=[f^{-1}\circ (g^{-1}\circ g)]\circ f=[f^{-1}\circ I_B]\circ f=f^{-1}\circ f=I_A.\\ (g\circ f)\circ (f^{-1}\circ g^{-1})=[(g\circ f)\circ f^{-1}]\circ g^{-1}=[g\circ (f\circ f^{-1})]\circ g^{-1}=[g\circ I_B]\circ g^{-1}=\\ =g\circ g^{-1}=I_C. \end{array}$$

EXERCÍCIOS

- **484.** Para cada função abaixo, prove que é bijetora e determine sua inversa:
 - a) $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = 2x 5
 - b) g: $|R \{4\} \rightarrow |R \{1\}|$ tal que $g(x) = \frac{x + 1}{x 4}$
 - c) h: $|R \rightarrow R|$ tal que h(x) = x^5
- **485.** Considere a função $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = |x I|.

Assinale, entre as alternativas abaixo, a soma dos números associados às afirmações corretas.

- 01) A função f não é sobrejetiva.
- 02) A função f é injetiva.
- 04) A função f possui uma inversa.
- 08) $f(x) \le 1$ se, e só se, $0 \le x \le 2$.
- 16) f é uma função par, isto é, f(-x) = f(x).
- 32) f é uma função ímpar, isto é, f(-x) = -f(-x).
- 64) f é uma função periódica de período 1.
- **486.** Nas funções bijetoras abaixo, de IR em IR, obtenha a lei de correspondência que define a função inversa.

a)
$$f(x) = 2x + 3$$

e)
$$q(x) = \sqrt[3]{x + 2}$$

b)
$$g(x) = \frac{4x - 1}{3}$$

f)
$$r(x) = \sqrt[3]{x-1}$$

c)
$$h(x) = x^3 + 2$$

g)
$$s(x) = \sqrt[3]{1 - x^3}$$

d)
$$p(x) = (x-1)^3 + 2$$

- **487.** O gráfico de uma função f é o segmento de reta que une os pontos (-3, 4) e (3, 0). Se f^{-1} é a função de f, determine $f^{-1}(2)$.
- **488.** Dada a função $f: \mathbb{R} \to \mathbb{R}$, bijetora, definida por $f(x) = x^3 + 1$, determine sua inversa $f^{-1}: \mathbb{R} \to \mathbb{R}$.
- **489.** A função f em \mathbb{R} , definida por $f(x) = x^2$, admite função inversa? Justifique.
- 490. Julgue os itens abaixo.
 - a) Sendo y = f(x) uma função real, se f(x) = x para algum x, dizemos que x é um ponto fixo de f.

Com base nessa definição pode-se concluir que a função $f(x) = 2 + \frac{1}{x}$ possui um único ponto fixo.

FUNÇÃO COMPOSTA - FUNÇÃO INVERSA

- b) Os zeros da função $f(x) = 5^{x^2} 5^{3x}$ são x = 0 e x = 3.
- c) O domínio da função real $h(x) = \frac{\sqrt{x^2 + 1}}{\log x}$ é o conjunto dos números reais com exceção do zero.
- d) Se $f:A \to B$ e $g:B \to C$ são funções injetoras, então a composta $g \circ f:A \to C$ também é uma função injetora.
- e) Toda função real é inversível.
- **491.** Seja a função f de \mathbb{R}_- em \mathbb{R}_+ , definida por $f(x) = x^2$. Qual é a função inversa de f?

Solução

A função dada é $f(x) = y = x^2 \operatorname{com} x \le 0 \operatorname{e} y \ge 0$.

Aplicando a regra prática, temos:

I) permutando as variáveis:

$$x = y^2$$
 com $y \le 0$ e $x \ge 0$

II) expressando y em função de x

$$x = y^2 \implies y = \sqrt{x}$$
 ou $y = -\sqrt{x}$

Considerando que na função inversa f^{-1} devemos ter $y \le 0$ e $x \ge 0$, a lei de correspondência da função inversa será $f^{-1}(x) = -\sqrt{x}$.

Resposta: É a função f^{-1} de \mathbb{R}_+ em \mathbb{R}_- definida por $f^{-1}(x) = -\sqrt{x}$.

- 492. Obtenha a função inversa nas seguintes funções abaixo.
 - a) $f: \mathbb{R}_+ \to \mathbb{R}_+$ $f(x) = x^2$
 - b) $f: A \to |R_+, \text{ em que } A = \{x \in |R| | x \le 1\}$ $f(x) = (x - 1)^2$
 - c) f: A \rightarrow IR., em que A = $\{x \in |R| | x \le 2\}$ f(x) = $-(x-2)^2$
 - d) f: A \rightarrow IR_, em que A = {x \in IR | x \leqslant -1} f(x) = -(x + 1)²
 - e) f: $\mathbb{R}_{-} \rightarrow \mathbb{B}$, em que $\mathbb{B} = \{ y \in \mathbb{R} \mid y \ge 1 \}$ f(x) = $x^2 + 1$
 - f) $|R_+ \rightarrow B$, em que $B = \{y \in |R| | y \leq 4\}$ $f(x) = 4 - x^2$
 - g) f: $\mathbb{R}_{-} \rightarrow \mathbb{B}$, em que $\mathbb{B} = \{ y \in \mathbb{R} \mid y \geqslant -1 \}$ f(x) = $x^2 - 1$

493. Considere a função

$$f: \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \to [-1, 1] \text{ tal que } f(x) = 2 - \frac{2}{\pi} x.$$

Esboce o gráfico correspondente e decida quais das afirmações abaixo são verdadeiras e quais são falsas.

- a) f é crescente.
- b) f é sobrejetora.
- c) f possui inversa e $f^{-1}(0) = \pi$.
- d) f possui inversa e $f^{-1}(0) = 0$.
- e) f não possui inversa.
- **494.** Considerando a função real $f(x) = 3 + 2^{x-1}$ e sendo $g: A \to R$ a sua inversa, pode-se afirmar:
 - a) A imagem de $f \in A$.
 - b) O gráfico de f está acima da reta y = 4.
 - c) $g\left(\frac{11}{2}\right) = \log_2 5$.
 - d) Se f(h(x)) = 3 + 2x, então $h\left(\frac{1}{4}\right) = 0$.
 - e) O conjunto solução da inequação $f(2x+1) < 1+3\cdot 2^x$ é o intervalo $]0,\ I[.$
 - f) O gráfico da função g intercepta o eixo Ox no ponto (1, 0).
- **495.** Seja a função bijetora f, de $\mathbb{R} \{2\}$ em $\mathbb{R} \{1\}$ definida por $f(x) = \frac{x+1}{x-2}$. Qual é a função inversa de f?

Solução

A função dada é $f(x) = y = \frac{x+1}{x-2} \operatorname{com} x \neq 2$ e $y \neq 1$. Aplicando a regra prática, temos:

$$x = \frac{y+1}{y-2} \implies xy - 2x = y+1 \implies xy - y = 2x+1 \implies$$
$$\implies y(x-1) = 2x+1 \implies y = \frac{2x+1}{y-1}.$$

Resposta: É a função f^{-I} , de $|R - \{I\}|$ em $|R - \{2\}|$, definida por $f^{-I}(x) = \frac{2x + I}{x - I}$.

496. Obtenha a função inversa das seguintes funções:

$$f(x) = \frac{x + 3}{x - 3}$$
b) $f: |R - \{-1\} \rightarrow |R - \{2\}$

$$f(x) = \frac{2x + 3}{x + 1}$$

a) $f: |R - \{3\} \rightarrow |R - \{1\}|$

$$f(x) = \frac{2x + 3}{x + 1}$$
c) $f: |R - \{3\} \to |R - \{-1\}|$

c)
$$f: |R - \{3\} \to |R - \{-1\}|$$

 $f(x) = \frac{4 - x}{x - 3}$

d)
$$f: |R - \left\{\frac{1}{3}\right\} \rightarrow |R - \left\{\frac{5}{3}\right\}$$

$$f(x) = \frac{5x + 2}{3x - 1}$$

e) f:
$$|R^* \to |R - \{4\}$$

f(x) = $\frac{4x + 2}{x}$

f) f:
$$|R - \{3\} \rightarrow |R - \{3\}$$

f(x) = $\frac{3x + 2}{x - 3}$

- **497.** Sendo f e g funções reais definidas pelas sentenças $f(x) = 3^x 1$ e $g(x) = log_4(x-1)$, determine $(f \circ g^{-1})$ (0).
- **498.** A função f definida em $|R \{2\}$ por $f(x) = \frac{2+x}{2-x}$ é inversível. O seu contradomínio é $|R \{a\}$. Calcule a.
- **499.** Seja a função f de $|\mathbb{R} \{-2\}$ em $|\mathbb{R} \{4\}|$ definida por $f(x) = \frac{4x 3}{x + 2}$. Qual é o valor do domínio de f^{-1} com imagem 5?

Solução

Queremos determinar $a \in \mathbb{R} - \{4\}$ tal que $f^{-1}(a) = 5$; para isso, basta determinar a tal que f(5) = a:

$$a = f(5) = \frac{4 \cdot 5 - 3}{5 + 2} = \frac{17}{7} \implies a = \frac{17}{7}.$$

- **500.** Seja a função f de $A = \{x \in |\mathbb{R} \mid x \leqslant -I\}$ em $B = \{y \in |\mathbb{R} \mid y \geqslant I\}$ definida por $f(x) = \sqrt{x^2 + 2x + 2}$. Qual é o valor do domínio de f^{-1} com imagem 3?
- **501.** Sejam os conjuntos $A = \{x \in |\mathbb{R} \mid x \ge 1\}$ e $B = \{y \in |\mathbb{R} \mid y \ge 2\}$ e a função f de A em B definida por $f(x) = x^2 2x + 3$. Obtenha a função inversa de f.

Solução

A função dada é $f(x) = y = x^2 - 2x + 3$ com $x \ge 1$ e $y \ge 2$. Aplicando a regra prática, temos:

I) permutando as variáveis:

$$x = y^2 - 2y + 3$$
 com $y \geqslant 1$ e $x \geqslant 2$

II) expressando y em função de x

$$x = y^2 - 2y + 3 \implies x = y^2 - 2y + 1 + 3 - 1 \implies x = (y - 1)^2 + 2 \implies$$

$$\Rightarrow (y - 1)^2 = \sqrt{x - 2} \implies y - 1 = \sqrt{x - 2} \text{ ou } y - 1 = -\sqrt{x - 2} \implies$$

$$\Rightarrow y = 1 + \sqrt{x - 2} \text{ ou } y = 1 - \sqrt{x - 2}.$$

Considerando que na função inversa f^{-1} devemos ter $y \ge 1$ e $x \ge 2$, a sentença que define a função inversa é $f^{-1}(x) = 1 + \sqrt{x-2}$.

Resposta:
$$f^{-1}: B \rightarrow A$$

 $f^{-1}(x) = 1 + \sqrt{x-2}$

502. Obtenha a função inversa das seguintes funções:

a)
$$A = \{x \in |R \mid x \ge 1\}$$
 e $B = \{y \in |R \mid y \ge -1\}$
f: $A \to B$
 $f(x) = x^2 - 2x$

b)
$$A = \{x \in |R \mid x \ge -1\}$$
 e $B = \{y \in |R \mid y \ge 1\}$
f: $A \rightarrow B$
 $f(x) = x^2 + 2x + 2$

c)
$$A = \{x \in |R| \mid x \le 2\}$$
 e $B = \{y \in |R| \mid y \geqslant -1\}$
f: $A \rightarrow B$
f(x) = $x^2 - 4x + 3$

d)
$$A = \left\{ x \in |R| \mid x \geqslant \frac{3}{2} \right\}$$
 $e \quad B = \left\{ y \in |R| \mid y \geqslant -\frac{1}{4} \right\}$ $f: A \rightarrow B$ $f(x) = x^2 - 3x + 2$

e)
$$A = \{x \in |R \mid x \ge 2\}$$
 e $B = \{y \in |R \mid y \le 9\}$
 $f: A \rightarrow B$
 $f(x) = -x^2 + 4x + 5$

f)
$$A = \{x \in |R| | x \le -1\}$$
 e $B = \{y \in |R| | y \le 5\}$
f: $A \to B$
 $f(x) = -x^2 - 2x + 4$

g)
$$A = \left\{ x \in |R| \mid x \geqslant \frac{5}{4} \right\}$$
 $e \quad B = \left\{ y \in |R| \mid y \geqslant -\frac{9}{8} \right\}$
 $f: A \rightarrow B$
 $f(x) = 2x^2 - 5x + 2$

503. Seja a função bijetora de |R em |R definida por $f(x) = \begin{cases} x^2 - I & \text{se } x \ge 0 \\ x - I & \text{se } x < 0 \end{cases}$. Determine f^{-1} .

Solução

Notemos que:

1°) se
$$x \ge 0$$
, então $f(x) = y = x^2 - 1$; logo, $y \ge -1$.

2°) se
$$x < 0$$
, então $f(x) = y = x - 1$; logo, $y < -1$.

A função proposta é:

$$y = x^2 - 1 \text{ com } x \ge 0 \text{ e } y \ge -1 \text{ ou } y = x - 1 \text{ com } x < 0 \text{ e } y < -1.$$

Aplicando a regra prática:

I) permutando as variáveis, temos:

$$x = y^2 - 1 \text{ com } y \ge 0 \text{ e } x \ge -1 \text{ ou } x = y - 1 \text{ com } y < 0 \text{ e } x < -1$$

II) expressando y em função de x, temos:

$$y = \sqrt{x + 1}$$
 com $y \ge 0$ e $x \ge -1$ ou $y = x + 1$ com $y < 0$ e $x < -1$.
Logo, a função inversa f^{-1} é de $|R|$ em $|R|$ e definida por:

$$f^{-1}(x) = \begin{cases} \sqrt{x+1} & \text{se } x \geqslant -1 \\ x+1 & \text{se } x < -1 \end{cases}$$

504. Nas seguintes funções em IR, determine a função inversa.

a)
$$f(x) = \begin{cases} 2x + 3 & \text{se } x \ge 2\\ 3x + 1 & \text{se } x < 2 \end{cases}$$

b)
$$f(x) = \begin{cases} 5 - 3x & \text{se } x \ge -1 \\ 4 - 4x & \text{se } x < -1 \end{cases}$$

c)
$$f(x) = \begin{cases} x^2 & \text{se } x \ge 0 \\ 2x & \text{se } x < 0 \end{cases}$$

d)
$$f(x) = \begin{cases} x^3 - 2 & \text{se } x < -1 \\ 4x + 1 & \text{se } x \ge -1 \end{cases}$$

e)
$$f(x) = \begin{cases} \sqrt{x-3} & \text{se } x \ge 3\\ (3-x)^3 & \text{se } x < 3 \end{cases}$$

f)
$$f(x) = \begin{cases} x^2 - 4x + 7 & \text{se } x \ge 2\\ 2x - 1 & \text{se } -1 < x < 2\\ -x^2 - 2x - 4 & \text{se } x \le -1 \end{cases}$$

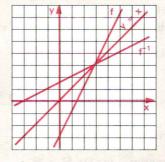
- **505.** A função f em $|\mathbb{R}$, definida por f(x) = |x+2| + |x-1|, admite função inversa?
- **506.** Seja a função f em \mathbb{R} definida por f(x) = 2x + |x + I| |2x 4|. Determine a função inversa de f. Calcule $f^{-1}(42)$.
- **507.** Seja a função f em \mathbb{R} definida por f(x) = 2x 3. Construa num mesmo plano cartesiano os gráficos de f e f^{-1} .

Solução

$$f(x) = 2x - 3$$
 $f^{-1}(x) = \frac{x + 3}{2}$

X	у
-1	-5
0	-5 -3
1	-1
2	1
2 3 4	3 5
4	5

х	у
-5	-1
-3	0
-1	1
1	2
3 5	2 3 4
5	4



508. Nas funções que seguem, construa num mesmo plano cartesiano os gráficos de f e f -1.

a)
$$f: |R \rightarrow R|$$

 $f(x) = 2x + 1$

b)
$$f: |R \rightarrow |R|$$

 $f(x) = \frac{2x + 4}{3}$

c)
$$f: \mathbb{R} \to \mathbb{R}$$

 $f(x) = 1 - x^3$

d)
$$f: |R_- \to B = \{y \in |R| | y \le 1\}$$

 $f(x) = 1 - x^2$

e) f: A
$$\to$$
 A = {x \in IR | x \geqslant -1}
f(x) = x² + 2x

f)
$$f: |R^* \to |R^*$$

 $f(x) = \frac{1}{x}$

g)
$$f: |R^* \to |R - \{1\}$$
.
 $f(x) = \frac{x-1}{x}$

h)
$$f: \mathbb{R} \to \mathbb{R}_+$$

 $f(x) = 2^x$

i)
$$f: |R \to R_+$$

 $f(x) = \left(\frac{1}{2}\right)^x$

509. Dadas as funções $f \in g$ em $|\mathbb{R}$, definidas por f(x) = 3x - 2 e g(x) = 2x + 5, determine a função inversa de $g \circ f$.

Solução

1º processo

Determinamos inicialmente $g \circ f$ e em seguida $(g \circ f)^{-1}$:

$$(g \circ f)(x) = g(f(x)) = 2f(x) + 5 = 2(3x - 2) + 2) + 5 = 6x + 1.$$

Aplicando a regra prática, temos: $x = 6x + 1 \implies y = \frac{x-1}{6}$;

portanto, $(g \circ f)^{-1}(x) = \frac{x-1}{6}$.

2º processo

Determinamos inicialmente f^{-1} e g^{-1} e em seguida $f^{-1} \circ g^{-1}$, pois $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Aplicando a regra prática em f(x) = 3x - 2 e g(x) = 2x + 5, temos:

$$f^{-1}(x) = \frac{x+2}{3}$$
 e $g^{-1}(x) = \frac{x-5}{2}$

$$(f^{-1} \circ g^{-1})(x) = f^{-1}(g^{-1}(x)) = \frac{g^{-1}(x) + 2}{3} = \frac{\frac{x - 5}{2} + 2}{3} = \frac{x - 1}{6}$$

portanto,
$$(g \circ f)^{-1}(x) = \frac{x-1}{6}$$
.

Resposta:
$$(g \circ f): \mathbb{R} \to \mathbb{R}$$

 $(g \circ f)^{-1}(x) = \frac{x-1}{6}$

510. Dadas as funções $f \in g$, determine a função inversa de $g \circ f$:

a)
$$f: |R \rightarrow |R|$$

 $f(x) = 4x + 1$

e g:
$$|R \rightarrow R|$$

g(x) = 3x - 5

b)
$$f: \mathbb{R} \to \mathbb{R}$$

e g:
$$|R \rightarrow R|$$

$$f(x) = x^3$$

$$g(x) = 2x + 3$$

$$f: |R_+ \to |R_+|$$

$$f(x) = x^2$$

$$f(x) = x^3$$
 $g(x) = 2x + 3$
c) $f: |R_+ \to |R_+|$ $g: |R_+ \to C| = \{x \in |R| | x \leq 4\}$
 $f(x) = x^2$ $g(x) = 4 - x$

$$f(x) = x^2$$

d)
$$A = \left\{ x \in |R| \mid x \geqslant \frac{3}{2} \right\}, B = \left\{ x \in |R| \mid x \geqslant -\frac{9}{4} \right\}$$

$$f: A \rightarrow B$$

 $f(x) = x^2 - 3x$

$$\begin{array}{ccc} & & g: B \rightarrow |R_{+} \\ 3x & & g(x) = 4x + 9 \end{array}$$

e)
$$A = \{x \in |R| | x \ge 1\}, C = \{x \in |R| | x \ge 2\}$$

$$A = \{x \in \mathbb{R} \mid x \geqslant 1\}, C = \{x \in \mathbb{R} \mid x \neq 1\}$$

 $f: A \to \mathbb{R}_+$ e $g: \mathbb{R}_+ \to C$

$$f(x) = x^2 - 1$$

$$g(x) = \sqrt{x + 4}$$

- **511.** Sejam os conjuntos $A = \{x \in |\mathbb{R} \mid x \ge -2\}, B = \{x \in |\mathbb{R} \mid x \ge -4\}$ e $C = \{x \in |\mathbb{R} \mid x \ge -1\}$ e as funções f de A em B definida por f(x) = $= x^2 + 4x$ e g de B em C definida por $g(x) = x^2 - 1$. Responda: existe $(g \circ f)^{-1}$? Justifique a resposta.
- **512.** Sejam os conjuntos $A = \left\{ x \in \mathbb{R} \mid x \leqslant \frac{1}{2} \right\}$ e $B = \left\{ x \in \mathbb{R} \mid x \geqslant -1 \right\}$ e as funções: f de A em \mathbb{R}_{-} definida por f(x) = 2x - 1, g de \mathbb{R}_{-} em \mathbb{R}_{+} definida por $g(x) = x^2 e h de | R_{\perp} em B definida por h(x) = 4x - 1$. Determine a função inversa de $h \circ (g \circ f)$.

LEITURA

Bertrand Russell e o Logicismo

Hygino H. Domingues

A filosofia iniciou-se com Tales de Mileto (c. 585 a.C.), o primeiro matemático a ter seu nome gravado na história. A filosofia moderna tem como seu marco inicial *O discurso do método* (1636), do grande matemático francês René Descartes. Ainda no século XVII brilhariam simultaneamente na filosofia e na matemática Pascal e Leibniz. No nosso século talvez ninguém encarne melhor essa dualidade científica do que Bertrand Russell (1872-1970).

Russell nasceu em Trelleck, País de Gales, numa família em que a tradição liberal constituía uma vertente destacada. O avô, Lorde John Russell, que chegou a primeiro-ministro no reinado da rainha Vitória, notabilizou-se na política por suas idéias reformistas (por exemplo, em favor da instrução popular). Era tão admirado que em suas viagens pelo interior o povo enfileirava-se à beira das estradas por onde passava para aclamá-lo. Uma frase sua era citada repetidamente: "Quando me perguntam se uma nação está amadurecida para a liberdade, respondo: acaso existe algum homem amadurecido para ser déspota?". A mãe de Bertrand era uma conhecida líder feminista; o pai, Visconde de Amberley, pretendia educá-lo no agnosticismo. Mas ambos morreram antes de ele completar 4 anos de idade. Assim, B. Russell acabou sendo educado por preceptores e governantas, segundo as idéias do ramo conservador da família. Mas não adiantou. Segundo suas próprias palavras: "Quanto à religião, passei a não acreditar primeiro no livre-arbítrio, depois na imortalidade e finalmente em Deus". E em matéria de moral, a vigente em seu tempo lhe parecia demasiado estreita e preconceituosa...

Aos 18 anos de idade B. Russell matriculou-se no Trinity College da Universidade de Cambridge, a fim de estudar matemática e filosofia. Nessa época a fundamentação rigorosa da matemática ainda não chegara a Cambridge, o que um espírito agudo e crítico como ele não deixaria passar em branco. Em *Meu pensamento filosófico* escreveu: "Aqueles que me ensinaram o cálculo infinitesimal não conheciam provas convincentes de seus teoremas fundamentais e tentaram fazer-me aceitar os sofismas oficiais como um ato de fé".

Certamente foi essa preocupação com a fundamentação rigorosa da matemática que o impeliu, desde logo, para o campo da lógica. Esta, desde Boole (1815-1864), vinha se utilizando de métodos matemáticos, como o emprego de um simbolismo e de demonstrações de princípios lógicos a partir de axiomas. Gottlob Frege (1848-1925), o expoente máximo da lógica em seu tempo, defendia a tese de que a matemática é um ramo da lógica, tese à qual Russell aderiu decididamente. Isso mesmo tendo encontrado falhas na obra de Frege. De fato,

em carta de 1902 Russell expunha a Frege uma antinomia que, segundo este, numa demonstração talvez exagerada de honestidade científica, derrubava os fundamentos de suas *Leis fundamentais*, uma obra cujo segundo volume estava para ser lançado. É que essa obra usava o conceito de conjunto de todos os conjuntos que leva a contradições. Era preciso eliminar da teoria dos conjuntos conceitos como esse...



Bertrand Russell (1872-1970).

A meta de Russell, de reduzir a matemática à lógica; traduziu-se num programa ou filosofia matemática conhecida como logicismo. Esse programa foi grandemente desenvolvido na obra Principia Mathematica, em três volumes, publicados respectivamente em 1910, 1912 e 1913, de autoria de Russell e A.N. Whitehead (1861-1947). Mas essa tentativa, como outras, de impor certos limites à matemática, apesar de produzir frutos muito positivos, ficou aquém da expectativa dos que a empreenderam e mostra vários pontos passíveis de críticas. Nas primeiras linhas de Meu pensamento filosófico Russell registrou: "Ouanto aos fundamentos da matemática, não cheguei a parte alguma".

A dedicação de Russell à matemática e à filosofia não o impediu de, até o fim de seus dias, engajar-se firmemente nas grandes questões sociais de seu tempo. Assim é que, em 1916, foi destituído de sua cátedra em Cambridge, considerado traidor da pátria e preso, por sua atitude pacifista em face da Primeira Guerra Mundial. Alguns anos antes do fim de sua vida não raro aparecia à frente de passeatas pela proscri-

cão de armas nucleares e contra a Guerra do Vietnã.

Em 1940, quando era professor da Universidade da Califórnia, o Conselho do City College de Nova Iorque aprovou por unanimidade a indicação do nome de Russell para uma cadeira de seu Departamento de Filosofia. Mas houve uma reação tão forte de alguns setores da Igreja que sua nomeação acabou sendo obstada na Justiça. A propósito declarou John Dewey: "Como americanos não nos resta senão enrubescer diante dessa mancha em nossa reputação de agir com lisura". Isso não impediu, contudo, que continuasse a ensinar nos Estados Unidos: a Universidade de Harvard acolheu-o prazerosamente.

Em 1944 voltou à Inglaterra, onde o rei George VI conferiu-lhe a Ordem do Mérito. Em 1950 foi agraciado com o Prêmio Nobel de Literatura. (Talvez não seja demais lembrar que essa láurea não é con-

ferida às áreas de matemática e filosofia.)

Equações Irracionais

Equação irracional é uma equação em que há incógnita sob um ou mais radicais.

Exemplos

$$\sqrt{x-2} = 3$$
, $\sqrt[3]{2x+1} = 2$, $\sqrt{3x+2} = x+2$, $\sqrt{2x+1} + \sqrt{2x-4} = 5$.

Para resolvermos uma equação irracional, devemos transformá-la, eliminando os radicais, bastando para tanto elevá-la a potências convenientes. Não devemos esquecer que este procedimento pode introduzir raízes estranhas à equação proposta inicialmente.

153. Equação
$$\sqrt{f(x)} = g(x)$$

Façamos o estudo da equação irracional do tipo $\sqrt{f(x)} = g(x)$. Elevando ambos os membros ao quadrado, obtemos:

$$f(x) = [g(x)]^2.$$

As duas equações podem ser escritas

$$\sqrt{f(x)} - g(x) = 0$$
 e $f(x) - [g(x)]^2 = 0$

ou

$$\sqrt{f(x)} - g(x) = 0$$
 (1) e $(\sqrt{f(x)} - g(x)) \cdot (\sqrt{f(x)} + g(x)) = 0$ (2).

É claro que toda raiz da equação (1) é raiz da equação (2) porque, anulando-se $\sqrt{f(x)} - g(x)$, anular-se-á o produto $(\sqrt{f(x)} - g(x))$ $(\sqrt{f(x)} + g(x))$.

Entretanto, a recíproca não é verdadeira, isto é, uma raiz da equação (2) pode não ser raiz da equação (1). De fato, uma raiz de (2) anula um dos fatores, podendo anular $\sqrt{f(x)} + g(x)$ sem anular $\sqrt{f(x)} - g(x)$.

Para verificarmos se α , raiz da equação (2), também é raiz da equação (1), podemos proceder de dois modos:

- 1°) verificando na equação proposta, isto é, substituindo x por α em (1) e notando se aparece uma igualdade verdadeira;
 - 2°) verificando se $g(\alpha) \ge 0$.

Mostremos que $g(\alpha) \geqslant 0 \implies \alpha$ é raiz de (1):

$$f(\alpha) = (g(\alpha))^2 \implies [\sqrt{f(\alpha)} - g(\alpha)] [\sqrt{f(\alpha)} + g(\alpha)] = 0 \implies$$

$$\bigoplus_{\substack{g(\alpha) = \sqrt{f(\alpha)} \\ g(\alpha) = -\sqrt{f(\alpha)}}} g(\alpha) = 0$$

Como $g(\alpha) \ge 0$, resulta que só $g(\alpha) = \sqrt{f(\alpha)}$ é verdadeira, isto é, α é raiz da equação $g(x) = \sqrt{f(x)}$.

Esquematicamente, temos:

$$\sqrt{f(x)} = g(x) \iff f(x) = [g(x)]^2 \ e \ g(x) \geqslant 0$$

EXERCÍCIOS

513. Resolva as equações, no conjunto dos números reais:

a)
$$\sqrt{2x-3} = 5$$

b)
$$\sqrt{x^2 + 5x + 1} + 1 = 2x$$

Solução

a) Não há possibilidade de introduzir raízes estranhas ao quadrarmos esta equação, pois:

$$g(x) = 5 > 0, \forall x \in \mathbb{R}$$

$$\sqrt{2x - 3} = 5 \implies 2x - 3 = 5^2 \implies x = 14$$

$$S = \{14\}$$

 b) Antes de quadrarmos esta equação é conveniente isolarmos a raiz em um dos membros. Assim, temos:

$$\sqrt{x^2 + 5x + 1} + 1 = 2x \implies \sqrt{x^2 + 5x + 1} = 2x - 1 \implies$$

 $\implies x^2 + 5x + 1 = (2x - 1)^2 \implies x^2 + 5x + 1 = 4x^2 - 4x + 1 \implies$
 $\implies 3x^2 - 9x = 0 \implies x = 0 \text{ ou } x = 3$

$$x = 0$$
 não é solução, pois $\sqrt{0^2 + 5 \cdot 0 + 1} + 1 \neq 2 \cdot 0$
 $x = 3$ é solução, pois $\sqrt{3^2 + 5 \cdot 3 + 1} + 1 = 2 \cdot 3$.

Para verificar se x = 0 ou x = 3 são ou não soluções da equação proposta, podemos utilizar o segundo processo, como segue:

$$g(x) = 2x - 1$$

$$g(0) = -1 < 0 \implies x = 0$$
 não é solução

$$g(3) = 5 > 0 \implies x = 3 \text{ é solução}.$$

514. Resolva, em IR, as equações irracionais:

a)
$$\sqrt{3x-2} = 4$$

b)
$$\sqrt{1-2x} = 3$$

c)
$$\sqrt{x^2 - 5x + 13} = 3$$

d)
$$\sqrt{2x^2 - 7x + 6} = 2$$

e)
$$\sqrt{3x^2 - 7x + 4} = 2$$

f)
$$\sqrt{16 + \sqrt{x + 4}} = 5$$

g)
$$\sqrt{5 + \sqrt{3 + x}} = 3$$

h)
$$\sqrt{5x + 10} = 17 - 4x$$

i)
$$x + \sqrt{25 - x^2} = 7$$

j)
$$x - \sqrt{25 - x^2} = 1$$

k)
$$2 - x - 2\sqrt{x + 1} = 0$$

1)
$$\sqrt{x^2 + x - 1} = 2 - x$$

m)
$$\sqrt{9x^2 + 2x - 3} + 2 = 3x$$

n)
$$\sqrt{x^4 + 2x^2 - x + 1} = 1 - x^2$$

o)
$$\sqrt{1-\sqrt{x^4-x^2}} = x-1$$

p)
$$\sqrt{2x + \sqrt{6x^2 + 1}} = x + 1$$

- **515.** Resolva a equação $\sqrt{4x+5} x = 0$, em IR.
- **516.** Calcule x, sabendo que ele é dado pela expressão $x = \sqrt{1 + x}$.
- 517. Julgue os seguintes itens.

a)
$$27 + 9a + a^2 + (3^{-1}a)^3 = \left(\frac{9 + a}{3}\right)^3$$
.

b)
$$2,333...$$
 = 2 + 0,3 + 0,03 + ... = $2\frac{1}{3}$.

- c) A equação $x + \sqrt{x} 2 = 0$ possui duas raízes reais.
- d) Se a é um número real, então |a| |a + 1| < 0.
- e) Se a, b, $\frac{5}{12}$, c, d estão em progressão aritmética, então $a + b + c + d = \frac{5}{3}$.

- f) |x-1| (x+1) (x-2) < 0 para todo $x \in \mathbb{R}$ tal que -1 < x < 2.
- g) Se a e b são números reais positivos, então

$$\frac{b^4 - a^2}{(b - \sqrt{a})} = b^3 + a^{\frac{1}{2}}b + ab + a^{\frac{3}{2}}.$$

- **518.** Verifique se existem números reais x tais que $2 x = \sqrt{x^2 12}$. Justifique a resposta.
- 519. Resolva as equações, no conjunto dos reais:

a)
$$x^3 - 3\sqrt{x^3} + 2 = 0$$

b)
$$\sqrt[4]{x} + 2\sqrt{x} - 1 = 0$$

Soluções

a) Fazendo $\sqrt{x^3} = y$ e $x^3 = y^2$, temos: $y^2 - 3y + 2 = 0 \implies y = 1$ ou y = 2

mas
$$y = \sqrt{x^3}$$
; logo:

$$\sqrt{x^3} = 1 \implies x^3 = 1 \implies x = 1$$

 $\sqrt{x^3} = 2 \implies x^3 = 4 \implies x = \sqrt[3]{4}$

$$S = \{1, \sqrt[3]{4}\}.$$

b) Fazendo
$$\sqrt[4]{x} = y$$
 e $\sqrt{x} = y^2$, temos:
 $2y^2 + y - 1 = 0 \implies y = \frac{1}{2}$ ou $y = -1$

Agora calculemos x:

$$y = -1 \implies \sqrt[4]{x} = -1 \implies x \notin \mathbb{R}$$

$$y = \frac{1}{2} \implies \sqrt[4]{x} = \frac{1}{2} \implies x = \frac{1}{16}$$

$$S = \left\{ \frac{1}{16} \right\}.$$

520. Resolva as equações, em IR:

a)
$$x - 5\sqrt{x} + 6 = 0$$

b)
$$9x + 12\sqrt{x} - 5 = 0$$

c)
$$6x + 7\sqrt{x} + 2 = 0$$

d)
$$x - 2\sqrt{x} - 2 = 0$$

e)
$$x^3 - 6\sqrt{x^3} + 5 = 0$$

f)
$$x^3 + 7\sqrt{x^3} - 8 = 0$$

g)
$$\sqrt[4]{x} - \sqrt{x} + 2 = 0$$

h)
$$\sqrt{x} - \sqrt[4]{x} - 6 = 0$$

i)
$$3\sqrt[4]{x} - 2\sqrt{x} - 1 = 0$$

j)
$$9\sqrt[4]{x^3} - 8\sqrt{x^3} - 1 = 0$$

521. Resolva, em IR, a equação:

$$\sqrt{x^2 + 3x + 6} - 3x = x^2 + 4$$

Solução

A equação proposta é equivalente a proposta é equivalente e equivalente e exploration de la proposta de la

$$x^2 + 3x + 4 - \sqrt{x^2 + 3x + 6} = 0 \implies x^2 + 3x + 6 - \sqrt{x^2 + 3x + 6} - 2 = 0.$$
 Fazendo $\sqrt{x^2 + 3x + 6} = y$, temos:

$$y^2 - y - 2 = 0 \implies y = 2 \text{ ou } y = -1$$

y = -1 não convém, pois $y = \sqrt{x^2 + 3x + 6} \ge 0$.

Para y = 2, temos:

$$\sqrt{x^2 + 3x + 6} = 2 \implies x^2 + 3x + 6 = 2^2 \implies x^2 + 3x + 2 = 0 \implies x = -2 \text{ ou } x = -1$$

 $S = \{-2, -1\}.$

522. Resolva as equações, em IR:

a)
$$3x^2 + 5x + 4 = 2\sqrt{3x^2 + 5x + 7}$$

d)
$$x^2 + 4\sqrt{x^2 - 2x - 6} = 2x + 3$$

b)
$$x^2 + \sqrt{x^2 - 4x - 1} = 4x + 7$$

e)
$$3x^2 - 4x + \sqrt{3x^2 - 4x - 6} = 18$$

c)
$$x^2-x+3=5\sqrt{x^2-x-3}$$

523. Resolva, em IR, a equação:

$$x^{\sqrt{x}} = \sqrt{x^x}$$

524. Resolva, em IR, a equação:

$$\sqrt{2x + 1} + \sqrt{2x - 4} = 5$$

Solução

Antes de elevarmos ao quadrado, devemos transpor uma das raízes para o outro membro. Assim, temos:

$$\sqrt{2x + 1} + \sqrt{2x - 4} = 5 \implies \sqrt{2x + 1} = 5 - \sqrt{2x - 4}
\implies (\sqrt{2x + 1})^2 = (5 - \sqrt{2x - 4})^2 \implies 2x + 1 = 25 - 10\sqrt{2x - 4} + 2x - 4 \implies 10\sqrt{2x - 4} = 20 \implies \sqrt{2x - 4} = 2 \implies 2x - 4 = 2^2 \implies x = 4
x = 4 \neq \text{ solução, pois:}
\(\sqrt{2 \cdot 4 + 1} + \sqrt{2 \cdot 4 - 4} = 5 \)$$

$$\sqrt{2 \cdot 4} + 1 + \sqrt{2 \cdot 4} - 4 = S = \{4\}.$$

525. Resolva, em IR, as equações:

a)
$$\sqrt{36 + x} = 2 + \sqrt{x}$$

b)
$$\sqrt{x+1} + \sqrt{x-1} = 1$$

c)
$$\sqrt{x+1} - \sqrt{x-1} = 1$$

a)
$$\sqrt{x} + 1 = \sqrt{2x + 1}$$

b)
$$\sqrt{2x-3} + \sqrt{4x+1} = 4$$

c)
$$\sqrt{4x + 1} - \sqrt{x - 2} = 3$$

d)
$$\sqrt{2x+2} - \sqrt{x-1} = 2$$

e) $\sqrt{x + 1} - 1 = \sqrt{x} - \sqrt{x + 8}$

f)
$$\sqrt{x} - \sqrt{x} - \sqrt{1-x} = 1$$

d) $\sqrt{x-9} - \sqrt{x-18} = 1$

e) $\sqrt{x-2} - \sqrt{x-14} = 1$

f) $\sqrt{x-4} + \sqrt{x+24} = 14$

g)
$$\sqrt{1 + x + x^2} + \sqrt{1 - x + x^2} = 4$$

527. Resolva, em IR, as equações:

a)
$$\sqrt{x + 10} - \sqrt{x + 3} = \sqrt{4x - 23}$$

b)
$$\sqrt{x+4} + 2\sqrt{x+1} = \sqrt{x+20}$$

c)
$$\sqrt{x + 5} = \sqrt{4x + 9} - \sqrt{x}$$

d)
$$\sqrt{x+6} + \sqrt{x+1} = \sqrt{7x+4}$$

e)
$$\sqrt{4x - 3a} - \sqrt{x + 6a} = \sqrt{x - 3a}$$

528. Resolva, em IR, a equação:

$$\sqrt{x-2} + \sqrt{x-7} = \sqrt{x+5} + \sqrt{x-10}$$
.

Solução

$$\sqrt{x-2} + \sqrt{x-7} = \sqrt{x+5} + \sqrt{x-10} \implies$$

$$\Rightarrow (\sqrt{x-2} + \sqrt{x-7})^2 = (\sqrt{x+5} + \sqrt{x-10})^2 \Rightarrow$$

$$\Rightarrow x-2+x-7+2\sqrt{x^2-9x+14}=x+5+x-10+2\sqrt{x^2-5x-50} \Rightarrow$$

$$\Rightarrow 2\sqrt{x^2 - 9x + 14} = 4 + 2\sqrt{x^2 - 5x - 50} \Rightarrow$$

$$\Rightarrow \sqrt{x^2 - 9x + 14} = 2 + \sqrt{x^2 - 5x - 50} \Rightarrow$$

$$\implies$$
 60 - 4x = $4\sqrt{x^2 - 5x - 50}$ \implies 15 - x = $\sqrt{x^2 - 5x - 50}$ \implies

$$\implies$$
 225 - 30x + x² = x² - 5x - 50 \implies -25x = -275 \implies x = 11

x = 11 é solução, pois

$$\sqrt{11-2} + \sqrt{11-7} = \sqrt{11+5} + \sqrt{11-10}$$

 $S = \{11\}.$

529. Resolva, em IR, as equações:

a)
$$\sqrt{2x+3} + \sqrt{3x+2} - \sqrt{2x+5} = \sqrt{3x}$$

b)
$$\sqrt{x+6} + \sqrt{x-10} = \sqrt{x+17} + \sqrt{x-15}$$

c)
$$\sqrt{x-1} + \sqrt{x+2} = \sqrt{x+34} - \sqrt{x+7}$$

d)
$$\sqrt{8x + 1} - \sqrt{2x - 2} = \sqrt{7x + 4} - \sqrt{3x - 5}$$

530. Resolva, em IR, as equações:

a)
$$x + \sqrt{x^2 + 16} = \frac{40}{\sqrt{x^2 + 16}}$$

b)
$$\sqrt{x} + \sqrt{x + 2} = \frac{4}{\sqrt{x + 2}}$$

c)
$$\sqrt{5 + x} + \sqrt{5 - x} = \frac{12}{\sqrt{5 + x}}$$

d)
$$\frac{\sqrt{4x + 20}}{4 + \sqrt{x}} = \frac{4 - \sqrt{x}}{\sqrt{x}}$$

e)
$$\sqrt{x-1} + \sqrt{2x-2} = 2$$

531. Resolva, em IR, a equação:

$$\frac{2}{x + \sqrt{2 - x^2}} + \frac{2}{x - \sqrt{2 - x^2}} = x$$

Solução

Multiplicando os termos da primeira fração por $x - \sqrt{2 - x^2}$ e os da segunda por $x + \sqrt{2 - x^2}$, temos:

gunda por
$$x + \sqrt{2} - x^2$$
, temos:
$$\frac{2(x - \sqrt{2} - x^2)}{2x^2 - 2} + \frac{2(x + \sqrt{2} - x^2)}{2x^2 - 2} = x \implies$$

$$\Rightarrow \frac{x - \sqrt{2} - x^2}{x^2 - 1} + \frac{x + \sqrt{2} - x^2}{x^2 - 1} = x \implies 2x = x(x^2 - 1) \implies$$

$$\Rightarrow x^3 - 3x = 0 \implies x(x^2 - 3) = 0 \implies x = 0 \text{ ou } x = \sqrt{3} \text{ ou } x = -\sqrt{3}$$

$$x = \sqrt{3} \text{ ou } x = -\sqrt{3} \text{ não são soluções, pois devemos ter } 2 - x^2 \geqslant 0 \text{ para que seja real a expressão } \sqrt{2 - x^2}. \text{ Somente } x = 0 \text{ é solução e isso pode ser verificado facilmente, substituindo } x \text{ por zero na equação proposta.}$$

532. Resolva, em IR, as equações:

a)
$$\frac{1}{\sqrt{x + \sqrt{x^2 - 1}}} + \frac{1}{\sqrt{x - \sqrt{x^2 - 1}}} = \sqrt{2(x^2 + 1)}$$

b)
$$\frac{1}{1-\sqrt{1-x}} - \frac{1}{1+\sqrt{1-x}} = \frac{\sqrt{3}}{x}$$

c)
$$\frac{x + \sqrt{3}}{\sqrt{x} + \sqrt{x + \sqrt{3}}} + \frac{x - \sqrt{3}}{\sqrt{x} - \sqrt{x - \sqrt{3}}} = \sqrt{x}$$

533. Resolva as equações abaixo, em IR:

a)
$$\frac{1}{\sqrt{3+x}+\sqrt{3-x}}+\frac{1}{\sqrt{3+x}-\sqrt{3-x}}=2$$

b)
$$\sqrt{x + \sqrt{x}} - \sqrt{x - \sqrt{x}} = \frac{4}{3} \sqrt{\frac{x}{x + \sqrt{x}}}$$

c)
$$\frac{1 + x - \sqrt{2x + x^2}}{1 + x + \sqrt{2x + x^2}} = \frac{\sqrt{2 + x} + \sqrt{x}}{\sqrt{2 + x} - \sqrt{x}}$$

534. Sendo a e b números reais, resolva a equação:

$$\sqrt{a-x} \,+\, \sqrt{b-x} \,=\, \sqrt{a\,+\,b-2x}$$

535. Sendo $a \in \mathbb{R}_+^*$, resolva a equação:

$$2x + 2\sqrt{a^2 + x^2} = \frac{5a^2}{\sqrt{a^2 + x^2}}$$

536. Sendo a e b números reais não negativos, resolva e discuta a equação:

$$\sqrt{x + a} = \sqrt{x} + \sqrt{b}$$

537. Sabendo que a e b são números reais e positivos, resolva as equações:

a)
$$\frac{\sqrt{a+x} + \sqrt{a-x}}{\sqrt{a+x} - \sqrt{a-x}} = \sqrt{b}$$

c)
$$\frac{\sqrt{a + x + \sqrt{a - x}}}{\sqrt{a + x - \sqrt{a - x}}} = \frac{b}{a}$$

b)
$$\frac{\sqrt{a} + \sqrt{x - b}}{\sqrt{b} + \sqrt{x - a}} = \sqrt{\frac{a}{b}}$$

538. Sendo *a* e *b* números reais não nulos, resolva a equação:

$$\sqrt{a^2 + x\sqrt{b^2 + x^2 - a^2}} = x - a$$

- **539.** Trabalhando no conjunto dos números reais, resolva a equação $\sqrt{x-1} = a-x$, determinando ao mesmo tempo os valores de a para que a equação tenha efetivamente solução. Encontre a fórmula que dá a solução em termos do parâmetro a e explique por que essa fórmula (e não outra) é a solução. Faça os gráficos das funções $y = \sqrt{x-1}$ e y = a-x e interprete a solução da equação dada em termos desses gráficos.
- 540. Resolva os sistemas de equações, em IR × IR:

a)
$$\begin{cases} xy = 36 \\ \sqrt{x} + \sqrt{y} = 5 \end{cases}$$

c)
$$\begin{cases} \sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{5}{2} \\ x + y = 10 \end{cases}$$

b)
$$\begin{cases} \sqrt{x} - \sqrt{y} = 2\sqrt{xy} \\ x + y = 20 \end{cases}$$

d)
$$\begin{cases} x + y - \sqrt{xy} = 7 \\ x^2 + y^2 + xy = 133 \end{cases}$$

541. Resolva os sistemas de equações, em IR × IR:

a)
$$\begin{cases} 5\sqrt{x^2 - 3y - 1} + \sqrt{x + 6y} = 19 \\ 3\sqrt{x^2 - 3y - 1} = 1 + 2\sqrt{x + 6y} \end{cases}$$

b)
$$\begin{cases} \sqrt{x+y} + \sqrt{2x+4y} = 4 + \sqrt{2} \\ \sqrt{x+2y} - \sqrt{2x+2y} = 2\sqrt{2} - 2 \end{cases}$$

154. Equação $\sqrt[3]{f(x)} = g(x)$

Façamos agora o estudo da equação do tipo $\sqrt[3]{f(x)} = g(x)$.

Vamos mostrar que ao elevarmos esta equação ao cubo não introduzimos raízes estranhas, isto é, obtemos uma equação equivalente.

$$\sqrt[3]{f(x)} = g(x) \iff f(x) = [g(x)]^3.$$

De fato, considerando estas duas equações, temos:

$$\sqrt[3]{f(x)} = g(x)$$
 e $f(x) = [g(x)]^3$

ou

$$\sqrt[3]{f(x)} - g(x) = 0$$
 (1) e $f(x) - [g(x)]^3 = 0$ (2).

Observemos em (2) que:

$$f(x) - [g(x)]^3 = [\sqrt[3]{f(x)} - g(x)] \cdot [(\sqrt[3]{f(x)})^2 + g(x) \cdot \sqrt[3]{f(x)} + (g(x))^2] = 0.$$

Como o fator $(\sqrt[3]{f(x)})^2 + g(x) \cdot \sqrt[3]{f(x)} + (g(x))^2$ é sempre positivo, pois

$$(\sqrt[3]{f(x)})^2 + g(x) \cdot \sqrt[3]{f(x)} + (g(x))^2 = \left[\sqrt[3]{f(x)} + \frac{g(x)}{2}\right]^2 + \frac{3 \cdot [g(x)]^2}{4},$$

resulta que o fator $\sqrt[3]{f(x)} - g((x))$ é nulo e a equação (2) tem sempre as mesmas soluções da equação (1), isto é, (1) e (2) são equivalentes.

EXERCÍCIOS

542. Resolva, em IR, as equações:

a)
$$\sqrt[3]{2x + 1} = 3$$

b)
$$\sqrt[3]{4x^2 + 9x + 1} = x + 1$$

Solução

a)
$$\sqrt[3]{2x+1} = 3 \implies 2x+1 = 3^3 \implies x = 13$$

S = {13}.

b)
$$\sqrt[3]{4x^2 + 9x + 1} = x + 1 \implies 4x^2 + 9x + 1 = (x + 1)^3 \implies 4x^2 + 9x + 1 = x^3 + 3x^2 + 3x + 1 \implies x^3 - x^2 - 6x = 0 \implies x(x^2 - x - 6) = 0 \implies x = 0 \text{ ou } x = 3 \text{ ou } x = -2$$

S = $\{0, 3, -2\}$.

543. Resolva, em IR, as equações:

a)
$$\sqrt[3]{3x-5} = 1$$

b)
$$\sqrt[3]{4x + 1} = 2$$

c)
$$\sqrt[3]{2x + 5} = -3$$

d)
$$\sqrt[3]{x^2 - x - 4} = 2$$

e)
$$\sqrt[3]{3x^2 - 7x - 5} = 1$$

f)
$$\sqrt[3]{x^2 - 8x + 40} = 3$$

g)
$$\sqrt[3]{x} + 1 = 2x + 1$$

h)
$$\sqrt[3]{3x-1} = 2x-1$$

i)
$$\sqrt[3]{2x^2 + 3x - 1} = 2x - 1$$

j)
$$\sqrt[3]{8 + 15x - 5x^2 - 3x^3} = x + 2$$

544. Resolva a equação $2\sqrt[3]{x^4} - 3\sqrt[3]{x^2 - 20} = 0$ no conjunto dos reais.

545. Resolva a equação $\sqrt[3]{x+49} - \sqrt[3]{x-49} = 2$, para x real.

Como o fator (\$1(x)) + g(x) - (1(x)) + (x(x)) o omo)

$$\sqrt[3]{x+49} - \sqrt[3]{x-49} = 2 \implies \sqrt[3]{x+49} = 2 + \sqrt[3]{x-49} \implies (\sqrt[3]{x+49})^3 = 2 + \sqrt[3]{x-49} = 2 + \sqrt[3]{x-49} = 3 + \sqrt[3]{x-4$$

$$y^2 + 2y - 15 = 0 \implies y = 3$$
 ou $y = -5$, mas $y = \sqrt[3]{x - 49}$; então:
 $\sqrt[3]{x - 49} = 3 \implies x - 49 = 3^3 \implies x = 76$

$$\sqrt[3]{x-49} = -5 \implies x-49 = (-5)^3 \implies x = -76$$

$$S = \{76, -76\}.$$

546. Resolva a equação $\sqrt[3]{x+1} - \sqrt[3]{x-6} = 1$, em |R.

547. Se o número x é solução da equação $\sqrt[3]{x+9} - \sqrt[3]{x-9} = 3$, determine o valor de x^2 .

548. Resolva a equação $\sqrt[3]{x-1} + \sqrt[3]{x-2} = \sqrt[3]{2x-3}$, em |R.

- **549.** Resolva a equação $\sqrt[3]{2-x} = 1 \sqrt{x-1}$, para x real.
- **550.** Resolva a equação $\sqrt[3]{x+1} + \sqrt[3]{x-1} = \sqrt[3]{5x}$, no conjunto IR.

Solução

Para resolvermos esta equação vamos utilizar a identidade

$$(A + B)^3 = A^3 + B^3 + 3AB(A + B).$$

Fazendo A = $\sqrt[3]{x + 1}$, B = $\sqrt[3]{x - 1}$ e A + B = $\sqrt[3]{5x}$, temos:

$$(\sqrt[3]{5x})^3 = (\sqrt[3]{x+1})^3 + (\sqrt[3]{x-1})^3 + 3\sqrt[3]{x+1} \cdot \sqrt[3]{x-1} \cdot \sqrt[3]{5x} \implies$$

$$\Rightarrow x+1+x-1+3\sqrt[3]{5x^3-5x}=5x \Rightarrow \sqrt[3]{5x^3-5x}=x \Rightarrow 5x^3-5x=x^3 \Rightarrow$$

$$\Rightarrow 4x^3 - 5x = 0 \Rightarrow x(4x^2 - 5) = 0 \Rightarrow x = 0 \text{ ou } x = \frac{\sqrt{5}}{2} \text{ ou } x = -\frac{\sqrt{5}}{2}$$

$$S = \left\{0, \frac{\sqrt{5}}{2}, -\frac{\sqrt{5}}{2}\right\}.$$

- 551. Resolva, em IR, as equações:
 - a) $\sqrt[3]{x+2} + \sqrt[3]{x-2} = \sqrt[3]{11x}$
 - b) $\sqrt[3]{x+1} \sqrt[3]{x-1} = \sqrt[3]{x^2-1}$
 - c) $\sqrt[3]{1 + \sqrt{x} + \sqrt[3]{1 \sqrt{x}}} = \sqrt[3]{5}$
- 552. Resolva, em IR × IR, o sistema de equações:

$$(x_+ y = 72$$

$$\sqrt[3]{x} + \sqrt[3]{y} = 6$$

APÊNDICE II

Inequações Irracionais

155. Inequação irracional é uma inequação em que há incógnita sob um ou mais radicais.

Exemplos
$$\sqrt{x + 2} > 3$$
, $\sqrt{x^2 - 3x + 4} > x$, $\sqrt{x + 1} + \sqrt{x - 3} > 2$.

Observemos inicialmente que, se a e b são números reais não negativos, então:

$$a > b \iff a^2 > b^2$$

 $a < b \iff a^2 < b^2$

Assim, por exemplo, são verdadeiras as implicações

$$\begin{array}{ccc}
2 < 5 & \Rightarrow & 4 < 25 \\
\sqrt{3} > \sqrt{2} & \Rightarrow & 3 > 2 \\
4 < 9 & \Rightarrow & 2 < 3
\end{array}$$

mas são falsas as implicações

$$-3 < -2 \implies 9 < 4$$

 $2 > -5 \implies 4 > 25$
 $2 > -3 \implies 4 > 9$

. 156. Teorema

Se $f(x) \ge 0$ e $g(x) \ge 0$ em um conjunto de valores x pertencentes a $A \subset |R|$, então são equivalentes as inequações f(x) > g(x) e $[f(x)]^2 > [g(x)]^2$.

Demonstração

Seja S_1 o conjunto das soluções da inequação f(x) > g(x) e S_2 o conjunto das soluções da inequação $[f(x)]^2 > [g(x)]^2$, isto é,

$$S_1 = \{x \in A \mid f(x) > g(x)\}\$$

e

$$S_2 = \{x \in A \mid [f(x)]^2 > [g(x)]^2\}.$$

Para provarmos que as inequações f(x) > g(x) e $[f(x)]^2 > [g(x)]^2$ são equivalentes, basta provarmos que $S_1 = S_2$.

De fato, para todo α de S_1 , temos:

$$\begin{split} \alpha \in S_1 \subset A &\implies f(\alpha) > g(\alpha) > 0 \implies \begin{cases} f(\alpha) - g(\alpha) > 0 \\ e \\ f(\alpha) + g(\alpha) > 0 \end{cases} \implies \\ &\implies [f(\alpha) - g(\alpha)] \cdot [f(\alpha) + g(\alpha)] > 0 \implies [f(\alpha)]^2 - [g(\alpha)]^2 > 0 \implies \\ &\implies [f(\alpha)]^2 > [g(\alpha)]^2 \implies \alpha \in S_2. \end{split}$$

Acabamos de provar que $S_1 \subset S_2$; provemos agora que $S_2 \subset S_1$. Para todo α de S_2 , temos:

$$\alpha \in S_2 \subset A \implies \begin{pmatrix} \alpha \in S_2 \Rightarrow [f(\alpha)]^2 > [g(\alpha)]^2 \Rightarrow [f(\alpha)]^2 - [g(\alpha)]^2 > 0 \Rightarrow \\ \Rightarrow [f(\alpha) + g(\alpha)] \cdot [f(\alpha) - g(\alpha)] > 0 \\ e \\ \alpha \in A \Rightarrow f(\alpha) \geqslant 0 \text{ e } g(\alpha) \geqslant 0 \Rightarrow f(\alpha) + g(\alpha) \geqslant 0 \end{pmatrix} \implies \\ f(\alpha) - g(\alpha) > 0 \Rightarrow f(\alpha) > g(\alpha) \Rightarrow \alpha \in S_1.$$

Vejamos agora processos para resolvermos alguns tipos de inequações irracionais.

157. Inequação irracional $\sqrt{f(x)} < g(x)$

O processo para resolvermos esta inequação é:

1º) Estabelecemos o domínio de validade, isto é,

$$f(x) \geqslant 0 \quad e \quad g(x) > 0 \tag{I}$$

2º) Quadramos a inequação proposta e resolvemos

$$f(x) < [g(x)]^2$$
 (II)

As condições (I) e (II) podem ser agrupadas da seguinte forma:

$$0 \leqslant f(x) < [g(x)]^2 e g(x) > 0.$$

Esquematicamente, temos:

$$\sqrt{f(x)} < g(x) \iff 0 \leqslant f(x) < [g(x)]^2 \text{ e } g(x) > 0$$

Analogamente, podemos estabelecer para a inequação $\sqrt{f(x)} \leqslant g(x)$:

$$\sqrt{f(x)} \leqslant g(x) \iff 0 \leqslant f(x) \leqslant [g(x)]^2 \quad e \quad g(x) \geqslant 0$$

EXERCÍCIOS

553. Resolva, em IR, as inequações irracionais:

a)
$$\sqrt{x^2 - 3x} < 2$$

b)
$$\sqrt{2x + 5} \le x + 1$$

Solução

a)
$$\sqrt{x^2 - 3x} < 2 \implies 0 \leqslant x^2 - 3x < 4 \implies \begin{cases} x^2 - 3x \geqslant 0 \\ e \\ x^2 - 3x < 4 \end{cases}$$

$$\Rightarrow \begin{cases} x^2 - 3x \geqslant 0 \\ e \\ x^2 - 3x - 4 < 0 \end{cases} \Rightarrow \begin{cases} x \leqslant 0 \text{ ou } x \geqslant 3 \text{ (I)} \\ -1 < x < 4 \text{ (II)} \end{cases}$$

$$(I) \qquad 0 \qquad 3 \qquad x > x$$

$$(II) \qquad -1 \qquad 0 \qquad 3 \qquad 4 \qquad x$$

$$S = \{x \in |R| -1 < x \leqslant 0 \text{ ou } 3 \leqslant x < 4\}.$$

b)
$$\sqrt{2x+5} \le x+1 \implies \begin{cases} x+1 \ge 0 \\ 0 \le 2x+5 \le (x+1)^2 \end{cases}$$

$$\Rightarrow \begin{cases} x+1\geqslant 0 \\ e \\ 2x+5\geqslant 0 \\ e \\ 2x+5\leqslant (x+1)^2 \end{cases} \Rightarrow \begin{cases} x+1\geqslant 0 \\ e \\ 2x+5\geqslant 0 \Rightarrow \begin{cases} x\geqslant -1 \\ e \\ x\geqslant -\frac{5}{2} \end{cases}$$
 (II)
$$e$$

$$e$$

$$x \leqslant -2 \text{ ou } x\geqslant 2$$
 (III)

(I)
$$\frac{-1}{-\frac{5}{2}}$$
(II)
$$\frac{-2}{-\frac{5}{2}}$$

$$S = \{x \in |R| | x \ge 2\}.$$

- 554. Resolva as inequações, no conjunto dos números reais:
 - a) $\sqrt{3x-2} < 2$
 - b) $\sqrt{2x + 5} \le 3$
 - c) $\sqrt{x^2 x 2} < 2$
 - d) $\sqrt{3x^2 5x + 2} \le 2$
 - e) $\sqrt{2x^2 + x + 3} < 1$
- 555. Resolva, em IR, as inequações:

a)
$$\sqrt{4-3x} \leqslant x$$

b)
$$\sqrt{x+5} < x-1$$

c)
$$\sqrt{2x + 9} < x - 3$$

d)
$$\sqrt{x+3} \leqslant x+1$$

e)
$$\sqrt{x + 1} < 3 - x$$

f)
$$\sqrt{2x^2 - x - 6} \leqslant x$$

g)
$$\sqrt{x^2 - 3x + 3} < 2x - 1$$

h)
$$\sqrt{2x^2 - 5x - 3} < x + 3$$

i)
$$1 + \sqrt{x^2 - 3x + 2} \le 2x$$

556. Resolva, em IR, a desigualdade:

$$1 - 3x > \sqrt{2 + x^2 - 3x}$$

158. Inequação irracional $\sqrt{f(x)} > q(x)$

O processo para resolução desta inequação consiste em duas partes, que são:

1.ª parte

$$g(x) < 0$$
 e $f(x) \ge 0$

pois, sendo g(x) < 0 e $f(x) \ge 0$, a inequação $\sqrt{f(x)} > g(x)$ está satisfeita.

2ª parte

a) Estabelecemos o domínio de validade da inequação, isto é:

$$f(x) \geqslant 0$$
 e $g(x) \geqslant 0$ (I)

b) Quadramos a inequação proposta recaindo em:

$$f(x) > [g(x)]^2$$
 (II)

As condições (I) e (II) podem ser agrupadas da seguinte forma:

$$f(x) > [g(x)]^2 \quad e \quad g(x) \geqslant 0.$$

Esquematicamente, temos:

$$\sqrt{f(x)} > g(x) \implies \begin{cases} f(x) \geqslant 0 & e & g(x) < 0 \\ ou & ou \\ f(x) > [g(x)]^2 & e & g(x) \geqslant 0 \end{cases}$$

Analogamente, para a inequação $\sqrt{f(x)} \ge g(x)$, temos:

$$\sqrt{f(x)} \geqslant g(x) \implies \begin{cases} f(x) \geqslant 0 & e & g(x) < 0 \\ ou & ou \\ f(x) \geqslant [g(x)]^2 & e & g(x) \geqslant 0 \end{cases}$$

EXERCÍCIOS

557. Resolva, em IR, as inequações:

a)
$$\sqrt{3}x - 5 \ge 2$$

a)
$$\sqrt{3x-5} \ge 2$$
 b) $\sqrt{3x^2-7x+2} > -4$ c) $\sqrt{2x-1} > x-2$

c)
$$\sqrt{2x-1} > x-2$$

Solução

a)
$$\sqrt{3x-5} \geqslant 2 \implies 3x-5 \geqslant 2^2 \implies x \geqslant 3$$

S = $\{x \in |\mathbb{R} \mid x \geqslant 3\}.$

b)
$$\sqrt{3x^2 - 7x + 2} > -4 \implies 3x^2 - 7x + 2 \ge 0 \implies x < \frac{1}{3} \text{ ou } x > 2$$

 $S = \left\{ x \in |R| \ x < \frac{1}{3} \text{ ou } x > 2 \right\}.$

c)
$$\sqrt{2x-1} > x-2 \implies \begin{cases} 2x-1 \ge 0 & \text{e } x-2 < 0 \\ \text{ou} \\ 2x-1 > (x-2)^2 & \text{e } x-2 \ge 0 \end{cases}$$
 (I)

Resolvendo (I), temos:

$$\begin{cases} 2x - 1 \geqslant 0 \\ e \\ x - 2 < 0 \end{cases} \Rightarrow \begin{cases} x \geqslant \frac{1}{2} & \text{(III)} \\ e \\ x < 2 & \text{(IV)} \end{cases}$$

$$(III) \qquad \qquad \qquad \frac{1}{2} \qquad \qquad \times$$

$$(IV) \qquad \qquad \frac{1}{2} \qquad \qquad 2 \qquad \qquad \times$$

$$(III) \cap (IV) \qquad \qquad \qquad 1 \qquad 2 \qquad \qquad \times$$

$$S_1 = \left\{ x \in \mathbb{R} \mid \frac{1}{2} \leqslant x < 2 \right\}.$$

Resolvendo (II), temos:

$$S_2 = \{x \in |R| | 2 \le x < 5\}.$$

A solução da inequação proposta é dada por:

$$S = S_1 \cup S_2 = \left\{ x \in |R| \frac{1}{2} \le x < 5 \right\}.$$

558. Resolva as inequações, no conjunto dos números reais:

a)
$$\sqrt{2x + 3} > 5$$

b)
$$\sqrt{3x + 7} \ge 1$$

c)
$$\sqrt{4x-3} > -2$$

d)
$$\sqrt{4x^2 - 13x + 7} > 2$$

e)
$$\sqrt{x^2 - 2x + 7} \ge 3$$

f)
$$\sqrt{4-19x-5x^2} \ge -3$$

g)
$$\sqrt{5 + 5x - 2x^2} \ge 3$$

559. Resolva as inequações, em IR:

a)
$$\sqrt{3x-2} > x$$

b)
$$\sqrt{6-x} \geqslant x$$

c)
$$\sqrt{2x + 3} \ge 1 - x$$

d)
$$\sqrt{6x^2 + x - 1} > 2x + 1$$

e)
$$\sqrt{x^2 - 6x + 5} > x - 2$$

f)
$$\sqrt{x^2 + 4x - 4} \ge 2x - 2$$

g)
$$\sqrt{7x-1} \geqslant x+2$$

h)
$$\sqrt{4x^2 - 5x + 2} \ge x - 2$$

i)
$$\sqrt{2 + x - x^2} > x - 4$$

j)
$$\sqrt{2 + 3x - 2x^2} > x - 2$$

560. Resolva, em IR, a inequação:

$$\frac{\sqrt{3-x}}{x} \leqslant 2$$

Solução

Para resolvermos esta inequação, devemos multiplicar ambos os membros por x, não esquecendo que, dependendo do sinal de x, o sentido da desigualdade será mantido ou invertido.

1ª possibilidade: x > 0 (I)

$$\frac{\sqrt{3-x}}{x} \leqslant 2 \implies \sqrt{3-x} \leqslant 2x \implies 0 \leqslant 3-x \leqslant 4x^2 \implies$$

$$\Rightarrow \begin{pmatrix} 3-x \geqslant 0 \\ e \\ 3-x \leqslant 4x^2 \end{pmatrix} \Rightarrow \begin{pmatrix} 3-x \geqslant 0 \\ e \\ 4x^2+x-3 \geqslant 0 \end{pmatrix} \Rightarrow \begin{pmatrix} x \leqslant 3 \\ e \\ x \leqslant -1 \text{ ou } x \geqslant \frac{3}{4} \text{ (III)}$$

$$(I) \cap (II) \cap (III)$$

$$S_1 = \left\{ x \in |\mathbb{R}| \frac{3}{4} \leqslant x \leqslant 3 \right\}.$$

 2^{a} possibilidade: x < 0 (IV)

$$\frac{\sqrt{3-x}}{x} \leqslant 2 \implies \sqrt{3-x} \geqslant 2x \xrightarrow{(2x<0)} 3-x \geqslant 0 \implies x \leqslant 3 \qquad (V)$$

$$(IV) \qquad 0 \qquad \qquad \times \\
(V) \qquad 3 \qquad \qquad \times \\
(IV) \cap (V) \qquad 0 \qquad \qquad \times \\$$

$$S_2 = \{x \in |R| | x < 0\}.$$

A solução da inequação proposta é dada por:

$$S = S_1 \cup S_2 = \left\{ x \in |R| \ | \ x < 0 \ \text{ ou } \ \frac{3}{4} \leqslant x \leqslant 3 \right\}.$$

561. Resolva as inequações, em IR:

$$a) \ \frac{\sqrt{5x+3}}{x} < \sqrt{2}$$

c)
$$\frac{\sqrt{x+2}}{x} \geqslant 1$$

b)
$$\frac{\sqrt{24-2x-x^2}}{x} < 1$$

d)
$$\frac{\sqrt{-x^2 + 7x - 6}}{x} \ge 1$$

159. Inequação irracional $\sqrt{f(x)} > \sqrt{g(x)}$

O processo de resolução desta inequação é:

1º) Estabelecemos o domínio de validade da inequação, isto é,

$$f(x) \geqslant 0$$
 e $g(x) \geqslant 0$ (I)

2º) Quadramos a inequação proposta recaindo em

$$f(x) > g(x)$$
 (II)

As condições (I) e (II) podem ser agrupadas da seguinte forma $f(x) > g(x) \ge 0.$

Esquematicamente, temos:

$$\sqrt{f(x)} > \sqrt{g(x)} \implies f(x) > g(x) \geqslant 0$$

De modo análogo, para a inequação

$$\sqrt{f(x)} \geqslant \sqrt{g(x)}$$
, temos:

$$\sqrt{f(x)} \geqslant \sqrt{g(x)} \implies f(x) \geqslant g(x) \geqslant 0$$

EXERCÍCIOS

562. Resolva, em IR, a inequação:

$$\sqrt{2x^2-x-1} > \sqrt{x^2-4x+3}$$

Solução $\sqrt{2x^2 - x - 1} > \sqrt{x^2 - 4x + 3} \implies 2x^2 - x - 1 > x^2 - 4x + 3 \ge 0 \implies$ $\Rightarrow \begin{cases} 2x^2 - x - 1 > x^2 - 4x + 3 \\ e \\ x^2 - 4x + 3 \ge 0 \end{cases} \Rightarrow \begin{cases} x^2 + 3x - 4 > 0 \\ e \\ x^2 - 4x + 3 \ge 0 \end{cases}$ $\Rightarrow \begin{cases} x < -4 \text{ ou } x > 1 & \text{(I)} \\ e \\ x \le 1 \text{ ou } x \ge 3 & \text{(x)p (II)} & \text{(x)fy innoison obsorped .e.} \end{cases}$



$$S = \{x \in |R| | x < -4 \text{ ou } x \geqslant 3\}.$$

563. Resolva as inequações, em IR:

a)
$$\sqrt{3x-2} \ge \sqrt{2x-3}$$

(I)

b)
$$\sqrt{5-x} < \sqrt{2x+7}$$

c)
$$\sqrt{2x^2 - 5x - 3} \le \sqrt{8x + 1}$$

d)
$$\sqrt{x^2 - 7x + 17} \ge \sqrt{8 + 2x - x^2}$$

e)
$$\sqrt{2x^2 - 10x + 8} > \sqrt{x^2 - 6x + 7}$$

f)
$$\sqrt{-x^2 + 5x - 6} < \sqrt{4x^2 + 12x + 11}$$

c)
$$\sqrt{2x^2 - 5x - 3} \le \sqrt{8x + 1}$$
 g) $\sqrt{2 - 3x - x^2} > \sqrt{x^2 - 5x + 4}$ d) $\sqrt{x^2 - 7x + 17} \ge \sqrt{8 + 2x - x^2}$ h) $\sqrt{x^2 - 2x + 2} < \sqrt{2x^2 - x + 4}$

h)
$$\sqrt{x^2 - 2x + 2} < \sqrt{2x^2 - x + 4}$$

564. Resolva, no conjunto dos reais, as inequações:

a)
$$\sqrt{4 - \sqrt{1 - x}} > \sqrt{2 - x}$$

c)
$$\sqrt{1-x} \le \sqrt{5+x}$$

b)
$$\sqrt{2-\sqrt{3}+x}-\sqrt{4}+x<0$$
 d) $\sqrt[4]{x}+8<\sqrt{x}+2$

d)
$$\sqrt[4]{x} + 8 < \sqrt{x} + 2$$

565. Resolva, em IR, a inequação:

$$\sqrt{x+1} < 2 + \sqrt{x-4}$$

Solução

Estabelecemos inicialmente o domínio de validade da inequação

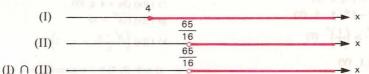
$$\begin{cases} x + 1 \ge 0 \\ e \\ x - 4 \ge 0 \end{cases} \implies x \ge 4 \quad (I)$$

Notemos que, para os valores de x satisfazendo (I), ambos os membros da inequação proposta são positivos, então podemos quadrá-la sem preocupações.

$$\sqrt{x+1} < 2 + \sqrt{x-4} \implies x+1 < 4 + x-4 + 4\sqrt{x-4} \implies 1 < 4\sqrt{x-4} \implies$$

$$\implies \sqrt{x-4} > \frac{1}{4} \implies x-4 > \frac{1}{16} \implies x > \frac{65}{16}$$
 (II)

A solução da inequação proposta é:



$$S = \left\{ x \in |R| \, |x > \frac{65}{16} \right\}.$$

566. Resolva as inequações, para x real:

a)
$$\sqrt{x+5} < 1 + \sqrt{x-2}$$

c)
$$\sqrt{3-x} - \sqrt{x+1} > \frac{1}{2}$$

b)
$$\sqrt{x-1} - \sqrt{x-4} < 3$$

d)
$$\sqrt{x^2 + 3x + 2} < 1 + \sqrt{x^2 - x + 1}$$

567. Resolva, em IR, a inequação:

$$\sqrt{x+6} - \sqrt{x+1} > \sqrt{2x-5}$$

568. Resolva, em IR, a inequação:

$$x + \sqrt{x^2 - 10x + 9} > \sqrt{x + 2\sqrt{x^2 - 10x + 9}}$$

Respostas dos Exercícios

Capítulo I

- 1. São proposições: a, b, c, d, e, f, g. São verdadeiras: a, c, d, e, g.
- 2. a) $3 \cdot 7 \neq 21$ (F)
 - b) 3(11-7) = 5 (F)
 - c) $3 \cdot 2 + 1 \leq 4$ (F)
 - d) $5 \cdot 7 2 > 5 \cdot 6$ (V)
 - e) $\left(\frac{1}{2}\right)^7 \geqslant \left(\frac{1}{2}\right)^3$ (F)
 - f) $\sqrt{2} \geqslant 1$ (V)
 - g) -(-4) < 7 (V)
 - h) 3 / 7 (V)
- 3. a) V
- e) V
- b) V
- f) F
- c) V
- g) F
- d) F
- 4. a) V
- e) F
- b) V
- f) F
- c) V
- g) V
- d) V
- 5. a) F
- e) F
- b) V
- f) V
- c) V
- g) V
- d) V
- h) V
- 6. p (V); q (V); r (F); s (F)

- 8 a) $(\exists x) (x^2 5x + 4 = 0)$
 - b) $(\forall a) ((a + 1) (a 1) = a^2 1)$
 - c) $(\exists y) \left(\frac{y}{3} + \frac{y}{4} \neq \frac{y}{7}\right)$
 - d) $(\forall m) (\sqrt{m^2} + 9 \neq m + 3)$
 - e) $(\forall x) (-(-x) = x)$
 - f) $(\exists a) (5a + 4 \leq 11)$
 - g) $(\exists x) (\sqrt{x^2} = x)$
 - h) $(\exists a) \left(\frac{a^2 a}{a} = a 1\right)$
- 9. a) mdc $(2, 3) \neq 1$ e mmc (2, 3) = 6

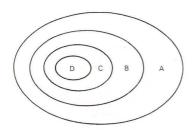
b)
$$\frac{3}{5} \neq \frac{6}{10}$$
 e 3 · 10 = 6 · 5

- c) $\frac{3}{7}$ < 1 ou -3 < -7
- d) $2^2 = 4 e \sqrt{4} \neq 2$
- e) $(-3)^2 = 9 \text{ e } \sqrt{9} = -3$
- f) $2 > 5 e 3^2 > 5^2$
- g) $(\exists x) (x > 2 e 3^x \le 3^2)$
- h) $(\forall x) (\sqrt{x} \ge 0)$
- i) Existe um número inteiro primo e par.
- j) Existe um triângulo isósceles e não equilátero
- k) Todo losango é quadrado.
- Todo número tem raiz quadrada diferente de zero.
- m) Existe um triângulo equiângulo e não equilátero.

- 10. a) F d) F g) F j) V m) F
 - b) F e) F h) V k) F
 - c) V f) F i) V 1) F

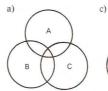
Capítulo II

- 13. a) [-9, -6, -3, 0, 3, 6, 9]
 - b) $\{\pm 1, \pm 2, \pm 3, \pm 6, \pm 7, \pm 14, \pm 21, \pm 42\}$
 - c) [0]
 - d) $\left\{ \frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{2}{2} \right\}$
 - e) (Cuiabá, Campo Grande, Goiânia)
- 14. $A = |x|x \in \text{divisor de } 6$
 - $B = \{x \mid x \text{ \'e m\'ultiplo inteiro e negativo de } 10\}$
 - $C = \{x \mid x \in \text{quadrado de um inteiro}\}$
 - $D = |x| x \in \text{satélite natural da Terra}$
- 15. $D = \{3\}$
- 16. $B = \emptyset$
- 19. todas
- 20. a) V c) F e) F g) V i) V
 - d) F f) V h) V b) F i) F
- 21.



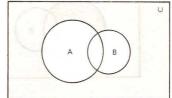
- 22. $\mathcal{L}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, c\}$ [a, d], [b, c], [b, d], [c, d], [a, b, c], [a, b, d], [a, c, d], [b, c, d], A]
- 23. A \cup B = {a, b, c, d}, A \cup C = {a, b, c, e}, $B \cup C = \{c, d, e\}, A \cup B \cup C = \{a, b, c, d, e\}$
- 25. a) V b) F c) F d) V e) V f) V

- 26. círculo de centro 0 e raio 2r
- 27. plano α
- 28. $A \cap B = \{b, c, d\}, A \cap C = \{c\},\$ $B \cap C = \{c, e\}, A \cap B \cap C = \{c\}$
- 30. a) V b) F c) F d) V e) V f) V
- 31. a) L b) R c) Q d) Q e) Q f) P
- 33. $X = \{a, c, e\}$
- 34. $C = \{2, 5, 6, 7, 9, 10\}$
- **35.** 4: {1, 2}, {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}
- 36.

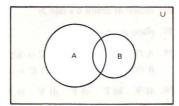


- 37. 2
- 38. a) la, b)
- d) [a, b]
- b) [e, f, g]
- e) [a, b, c]
- c) [b]
- f) [a, c, e, f, g]
- 40. a) V b) V
- c) F d) V

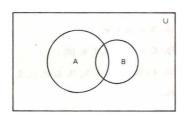
- **41.** $X = \{1, 3, 5\}$
- 42. a)



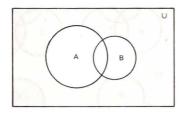
RESPOSTAS DOS EXERCÍCIOS



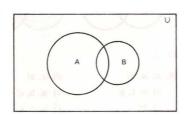
c)



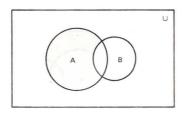
d)



e)



f)



45.
$$\overline{F} = \{6, 7, 8\}$$

- 46. A = [6, -1]
- $D = \left\{-\frac{1}{2}\right\}$
- B = [e, x, r, c, i, o] E = [2, 3, 4, 5]

 $C = \{3, -3, 5\}$

- 47. a, b, d, f
- 49. 64
- 50. $n_{A \cup B \cup C} = n_A + n_B + n_C n_{A \cap B} n_{B \cap C} - n_{C \cap A} + n_{A \cap B \cap C}$
- 51. $n(A \cap B) = 8$
- **52.** 332 e 83
- 53. P' ∪ Q

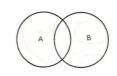
- 54. a) 8 b) 1 c) 7 d) 3 e) 12
- 55. n(A) = 4; n(B) = 4
- **56.** a) 500 b) 61 c) 257 d) 84

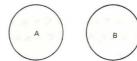
- 57. $A = \{p, q, r, s, t\}$ $B = \{r, s, x, z\}$

$$C = [s, t, u, v, x]$$

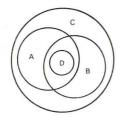
- 58. a) 560
- b) 280
- 59. 40%
- 60. a) [a, b, e, f, g]

e)





61.



Capítulo III

- 62. n(H) = 14
- 63. n(X) = 22
- 64. $B = N^*$
- 65. a, c, d, g, h, i
- 66. D(6) = $\{\pm 1, \pm 2, \pm 3, \pm 6\}$

$$D(-18) = \{\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18\}$$

$$D(-24) \cap D(16) = \{\pm 1, \pm 2, \pm 4, \pm 8\}$$

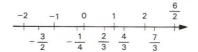
$$M(4) = [0, \pm 4, \pm 8, \pm 12, ...]$$

$$M(10) = \{0, \pm 10, \pm 20, \pm 30, \ldots\}$$

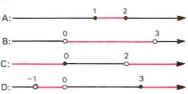
$$M(-9) \cap M(6) = [0, \pm 18, \pm 36, \pm 54, ...]$$

- 67. 12, 0, -1, -4 e 49
- 68. a) Não, pois $1 \in D(a) \cap D(b)$.
 - b) m é um máximo divisor comum de a e b: $mdc(a, b) = \pm m$.
 - c) $a \in b$ são primos entre si: $mdc(a, b) = \pm 1$.
 - d) Quando a é múltiplo de b.
 - e) Quando a e b são primos entre si.
 - f) $n \in \text{um mínimo múltiplo comum de } a \in b$: $\text{mmc}(a, b) = \pm n$.
- 69. a) ±1
- $d) \pm 6$
- b) ± 2
- $e) \pm 12$
- c) ± 2
- $f) \pm 42$
- 70. a, b, c, d, e, f, h, k, l
- 71. $\frac{2}{5}$, $\frac{4}{9}$, $\frac{8}{25}$, $\frac{32}{99}$, $\frac{271}{5}$ e $\frac{602}{111}$
- 72. $\frac{2}{3} < \frac{11}{12} < \frac{15}{16} < \frac{18}{19} < \frac{47}{48} < 1$

74.



- 75. a) 1
- b) 2
- 76. 0,025
- 77. α é racional, $\alpha = 1,4111... = \frac{127}{90}$
- 78. 17 000 dólares
- 79. 20%
- 80. a, b, c, f, g, h, i
- 88. 1
- 89.

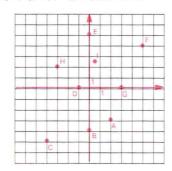


- 90. $[-1, 3] = \{x \in \mathbb{R} \mid -1 \leq x \leq 3\}$ $[0, 2[= \{x \in \mathbb{R} \mid 0 \leq x < 2\}]$ $]-3, 4[= \{x \in \mathbb{R} \mid -3 < x < 4\}]$ $]-\infty, 5[= \{x \in \mathbb{R} \mid x < 5\}]$ $[1, +\infty[\{x \in \mathbb{R} \mid x \geqslant 1\}]$
- 92. a) [1, 2]
- d) [0, 2]
- b)]1, 2]
- e) [-1, 2[
- c) $0, \frac{2}{5}$
- f) [1, 2
- 93. a) [-1, 4]
- c) [-1, 5]
- b)]-2, 5[
- d) $\left[-\frac{3}{2}, 0\right]$
- **94.** $C_A^B = [0, 1] \cup [3, 5[$
- 95. $\{x \in \mathbb{R} \mid -1 < x \leq 5\}$
- 96. [0, 2]
- 97. ZZ

Capítulo IV

117. A(4, 2), B(-4, 6), C(-5, -3), D(4, -5), E(0, 4), F(-3, 0), G(0, -6), H(5, 0), I(0, 0)

118.



119. a) $A \times B = \{(1, -2), (1, 1), (3, -2), (3, 1), (4, -2), (4, 1)\}$

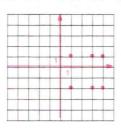
c)
$$A \times C = \{(1, -1), (1, 0), (1, 2), (3, -1), (3, 0), (3, 2), (4, -1), (4, 0), (4, 2)\}$$

d)
$$C \times A = \{(-1, 1), (-1, 3), (-1, 4), (0, 1), (0, 3), (0, 4), (2, 1), (2, 3), (2, 4)\}$$

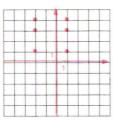
e)
$$B^2 = \{(-2, -2), (-2, 1), (1, -2), (1, 1)\}$$

f)
$$C^2 = \{(-1, -1), (-1, 0), (-1, 2), (0, -1), (0, 0), (0, 2), (2, -1), (2, 0), (2, 2)\}$$

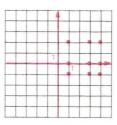
a)



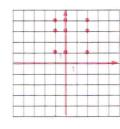
b)



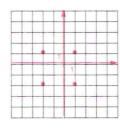
c)



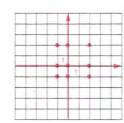
d)



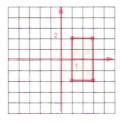
e)



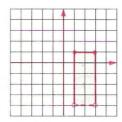
f)



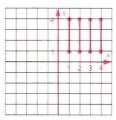
120. a)



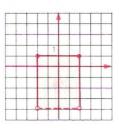
b)



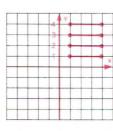
121. a)



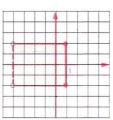
c)



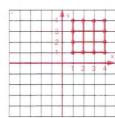
b)



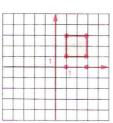
d)

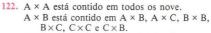


c)



e)





A×C está contido em B×C e C×C.

 $B \times A$ está contido em $B \times A$, $B \times B$, $B \times C$, $C \times A$, $C \times B$ e $C \times C$.

C × A está contido em C × A, C × B e C × C.

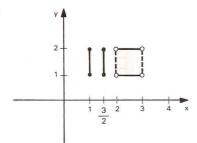
 $B \times B$ está contido em $B \times B$, $B \times C$, $C \times B$ e C × C.

 $B \times C$ está contido em $B \times C$, $C \times C$ e $C \times B$. C × B está contido em C × B e C × C.

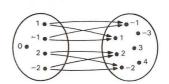
C × C está contido em C × C.

- **124.** $A^2 = \{(-2, -2), (-2, 0), (-2, 1), (-2, 3),$ (0, -2), (0, 0), (0, 1), (0, 3), (1, -2), (1, 0), (1, 1), (1, 3), (3, -2), (3, 0), (3, 1), (3, 2)
- 125. $A \times B = \{(-1, -1), (-1, 0), (-1, 2), (-1, 5), (-1,$ (0, -1), (0, 0), (0, 2), (0, 5), (2, -1),(2, 0), (2, 2), (2, 5)
- 126. $n(F \times G) = 12$

127.

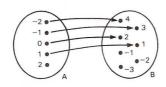


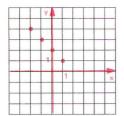
c) $T = \{(-2, -2), (-2, 2), (-1, -1), (-1, 1), (1, -1), (1, 1), (2, -2), (2, 2)\}$

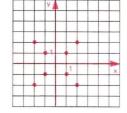


128. n(D) = 3

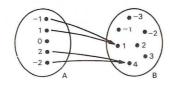
129. a) $R = \{(-2, 4), (-1, 3), (0, 2), (1, 1)\}$

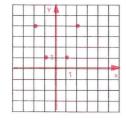


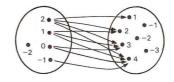


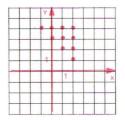


d) $V = \{(-1, 4), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)\}$

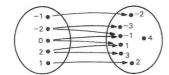


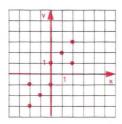




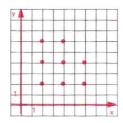


e) W =
$$\{(-2, -3), (-2, -1), (-1, -2), (0, -1), (0, 1), (1, 2), (2, 1), 2, 3\}$$

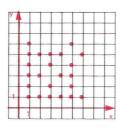




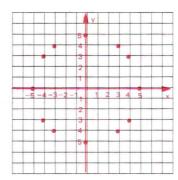
130. R = $\{(2, 2), (2, 4), (2, 6), (4, 2), (4, 6), (6, 2), (6, 4)\}$



131.



132.



133. a) D =
$$\{1, 2\}$$
 e Im = $\{1, 3, 4\}$

b) D =
$$\{-2, -1, 3, 2\}$$
 e Im = $\{-7, 4, 1\}$

c) D =
$$\{2, 1, 5\}$$
 e Im = $\{1, -3, \sqrt{2}\}$

d) D =
$$\{1 + \sqrt{2}, 1 - \sqrt{3}\}\$$
e Im = $\{\sqrt{2}, 1\}$

e) D =
$$\left\{3, \frac{5}{2}, \frac{3}{2}\right\}$$
 e Im = $\left\{\frac{1}{2}, -1, 0\right\}$

134. a)
$$D(R) = \{-2, -1, 0, 1\}$$
 e Im $(R) = \{1, 2, 3, 4\}$

b)
$$D(S) = \{-2, -1, 1, 2\} \in Im(S) = \{1, 4\}$$

c)
$$D(T) = \{-2, -1, 1, 2\}$$

e Im $(T) = \{-2, -1, 1, 2\}$

d)
$$D(V) = \{-1, 0, 1, 2\} \in Im(V) = \{1, 2, 3, 4\}$$

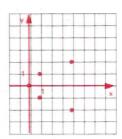
e)
$$D(W) = \{-2, -1, 0, 1, 2\}$$
 e
 $Im(W) = \{-3, -2, -1, 1, 2, 3\}$

135. a)
$$R = \{(0, 0), (1, -1), (1, 1), (4, -2), (4, 2)\}$$

b)
$$D(R) = [0, 1, 4] e$$

 $Im(R) = [-2, -1, 0, 1, 2]$

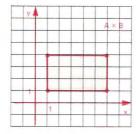
c)



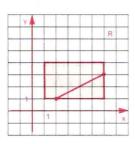
136.
$$D_f = \{x \in \mathbb{R} \mid x \neq -2 \ e \ x \neq \pm 2\}$$

RESPOSTAS DOS EXERCÍCIOS

137. a)



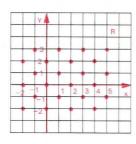
b)

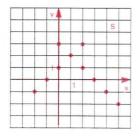


c)
$$D(R) = \{x \in |R| | 2 \le x \le 6\} e$$

 $Im(R) = \{y \in |R| | 1 \le y \le 3\}$

138. a)





b)
$$D_R = \{-2, -1, 0, 1, 2, 3, 4, 5\} = D_S$$

 $Im_R = \{-2, -1, 0, 1, 2, 3\} = Im_S$

c)
$$R \cap S = \emptyset$$

139. a)
$$R^{-1} = \{(2, 1), (1, 3), (3, 2)\}$$

b)
$$R^{-1} = \{(-1, 1), (-1, 2), (-1, 3), (1, -2)\}$$

c)
$$R^{-1} = \{(-2, -3), (3, 1), (-3, -2), (1, 3)\}$$

140. a)
$$R = R^{-1} = \{(0, 8), (1, 7), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (7, 1), (8, 0)\}$$

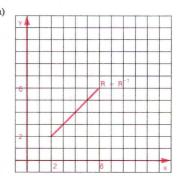
$$R^{-1} = \{(5, 0), (4, 2), (3, 4), (2, 6), (1, 8), (0, 10)\}$$

$$R^{-1} = \{(10, 0), (5, 1), (2, 2), (1, 3), (2, 4), (5, 5), (10, 6)\}$$

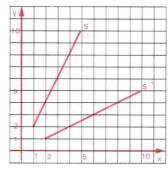
d)
$$R = \{(0, 1), (1, 2), (2, 4), (3, 8)\}$$

 $R^{-1} = \{(1, 0), (2, 1), (4, 2), (8, 3)\}$

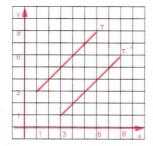
141. a)



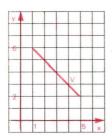
b)



c)



d)



Capítulo V

- 142. a) Não define função de A em B, pois o elemento 2 ∈ A não está associado a nenhum elemento de B.
 - b) Não define função de A em B, pois o elemento I ∈ A está associado a dois elementos de B.

- c e d) Define função de A em B, pois todo elemento de A está associado a um único elemento de B.
- 143. Somente d), pois o conjunto de partida é A = [0, 1, 2] e o conjunto de chegada é B = [-1, 0, 1, 2].
- 144. a) É função.
 - b) Não é função de R em R, pois qualquer reta vertical conduzida pelos pontos (x, 0), com x > 0, encontra o gráfico da relação em dois pontos.
 - c) Não é função de R em R, pois qualquer reta vertical conduzida pelos pontos (x, 0), com -1 < x < 1, não encontra o gráfico da relação.</p>
 - d) É função.
 - e) É função.
 - f) Não é função de \mathbb{R} em \mathbb{R} , pois a reta vertical conduzida pelo ponto (3, 0) encontra o gráfico da relação em mais que dois pontos e as retas verticais conduzidas pelos pontos (x, 0), com $x \neq 3$, não encontram o gráfico da relação.
- 145. a) f: $\mathbb{R} \to \mathbb{R}$ $x \mapsto -x$
- c) h: $|R| \rightarrow |R|$ $x \mapsto x^2 - 1$
- b) g: IR → IR
- x → x² -
- $y : \mathbb{N} \to \mathbb{N}$ $x \mapsto x^3$
- d) k: $\mathbb{R} \to \mathbb{R}$ $x \mapsto 2$
- 146. a) $f: \mathbb{Q} \to \mathbb{Q}$ $x \mapsto -x + 1$
- c) h: $\mathbb{R}^* \to \mathbb{R}$ $x \mapsto \frac{1}{x}$
- b) g: $\mathbb{Z} \to \mathbb{Q}$ $x \mapsto 2^x$
- 147. a) f(2) = 4
 - b) f(-3) = -11c) f(0) = -2
 - f) $f\left(\frac{3}{2}\right)$ não tem significado, pois $\frac{3}{2} \notin \mathbb{Z}$.
- 148. a) f(2) = 2
 - b) f(-1) = 8
 - c) $f(\frac{1}{2}) = \frac{11}{4}$
 - d) $f\left(-\frac{1}{3}\right) = \frac{46}{9}$
 - e) $f(\sqrt{3}) = 7 3\sqrt{3}$
 - f) $f(1-\sqrt{2}) = 4+\sqrt{2}$
- 149. f(2) = 17

150. a)
$$f(3) = 1$$

b)
$$f\left(-\frac{3}{7}\right) = 1$$

c)
$$f(\sqrt{2}) = 1 + \sqrt{2}$$

d)
$$f(\sqrt{4}) = 1$$

e)
$$f(\sqrt{3} - 1) = \sqrt{3}$$

f)
$$f(0.75) = 1$$

152.
$$x = -4$$

153.
$$x = 2$$
 ou $x = 3$

155.
$$f(0) = 0$$
 para $m \neq 0$

156. 32

158. a)
$$D(f) = \{0, 1, 2\} \in Im(f) = \{-1, 0, 1\}$$

b)
$$D(g) = \{-1, 0, 1, 2\} e \text{ Im } (g) = \{1, 2\}$$

c)
$$D(h) = \{-1, 0, 1\} \in Im(h) = \{-2\}$$

d)
$$D(k) = \{-2, 0, 1, 2\} \in Im(k) = \{-2, -1, 0, 2\}$$

159. a) Im =
$$\{-2, 0, 2\}$$

b) Im =
$$\{y \in \mathbb{R} \mid -2 \leqslant y \leqslant 2\}$$

c) Im =
$$\{y \in \mathbb{R} \mid y = 1 \text{ ou } y \ge 2\}$$

d)
$$Im = IR$$

e) Im =
$$\{y \in \mathbb{R} \mid 0 \leq y \leq 2 \text{ ou } y > 4\}$$

f) Im =
$$\{y \in \mathbb{R} \mid y \leq 1\}$$

160. a) D =
$$\{-4, -3, -2, -1, 0, 1, 2, 3\}$$
 e Im = $\{1, 2, 3, 4, 5\}$

b) D =
$$\{x \in |R| | -2 \le x \le 3\}$$
 e
Im = $\{y \in |R| | -3 \le y \le 2\}$

c) D =
$$\{x \in |R| | -2 \le x \le 4\}$$
 e
Im = $\{y \in |R| | 1 \le y \le 5\}$

d) D =
$$\{x \in \mathbb{R} \mid -3 \le x < 5\}$$
 e
Im = $\{y \in \mathbb{R} \mid 1 \le y < 3\}$

e) D =
$$\{x \in \mathbb{R} \mid -4 \le x \le 4\}$$
 e
Im = $\{y \in \mathbb{R} \mid -3 \le y \le 5\}$

f) D =
$$\{x \in \mathbb{R} \mid -3 \le x < 4\}$$
 e
Im = $\{-3, -2, -1, 0, 1, 2, 3\}$

161. a)
$$D(f) = |R|$$

b)
$$D(g) = |R - \{-2\}|$$

c)
$$D(h) = \mathbb{R} - \{2, -2\}$$

d)
$$D(p) = \{x \in \mathbb{R} \mid x \ge 1\}$$

e)
$$D(q) = \{x \in \mathbb{R} \mid x > -1\}$$

f)
$$D(r) = \{x \in |R| | x \ge -2 | e | x \ne 2\}$$

h) D(t) =
$$|R - \{-\frac{3}{2}\}$$

i)
$$D(n) = |R - \{3\}|$$

162.
$$\{y \in \mathbb{R} \mid y \ge 2\}$$

164. Todas são iguais, pois são todas funções de R em R e associam cada número real ao seu cubo.

165. Não são iguais, pois para
$$x < 0$$
 temos $\sqrt{x^2} \neq x$.

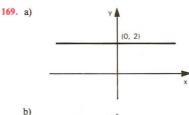
166. Somente serão iguais se forem funções de A em \mathbb{R} , em que A é qualquer subconjunto de $\{x \in \mathbb{R} \mid x \ge 1\}$.

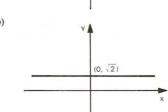
167. São iguais, pois
$$\sqrt{\frac{x+1}{x^2-x}} = \frac{\sqrt{x+1}}{\sqrt{x^2-x}}$$
 para

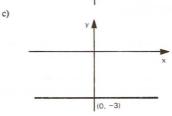
$$-1 \le x < 0 \text{ ou } x > 1.$$

168. Não são iguais, pois não têm o mesmo domínio.

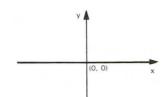
Capítulo VI



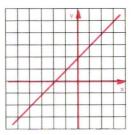




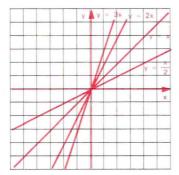
d)



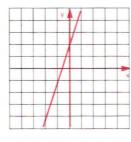
b)



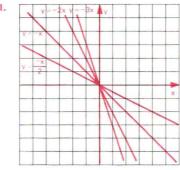
170.



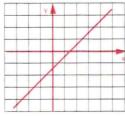
c)



171.



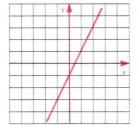
d)



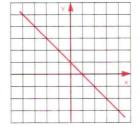
e)



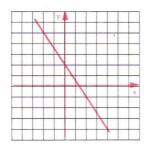
172. a)



f)



h)



174. a)
$$S = \{(3, 2)\}$$

d)
$$S = \{(3, -2)\}$$

b)
$$S = \{(-2, 4)\}$$

c)
$$S = \{(2, -1)\}$$

f)
$$S = \{(0, 0)\}$$

175. a)
$$S = \{(3, -1)\}$$

b)
$$S = \{(2, 1)\}$$

177. a)
$$y = 2x - 1$$

c)
$$y = x - 5$$

b)
$$y = \frac{1 - 3x}{2}$$

$$d) y = 2$$

178. 23 brancas; 16 pretas

179.
$$f(3) = -1$$

181.
$$y = -3x - 2$$

182.
$$y = -\frac{x}{2} - \frac{1}{2}$$

183.
$$y = \frac{3}{2}x + 4$$

184.
$$y = -\frac{x}{3} - 3$$

185. a)
$$y = \frac{x}{3} + \frac{1}{3}$$
 c) $y = \frac{2x}{3} - \frac{1}{3}$

c)
$$y = \frac{2x}{3} - \frac{1}{3}$$

b)
$$y = -\frac{x}{2} + 4$$
 d) $y = 2x + 3$

d)
$$y = 2x + 3$$

186. 20 litros

187. 1)
$$x \le 25068 \Rightarrow f(x) = 0$$

 $25068 < x \le 83561 \Rightarrow f(x) = \frac{x}{10} - 2506,80$
 $x > 83561 \Rightarrow f(x) = \frac{x}{4} - n$

2)
$$n = 15040,95$$

188. mãe:
$$\frac{H}{8}$$
; cada menino: $\frac{H}{4}$; a menina $\frac{3H}{8}$

- 189. 3 300 km
- 190. CR\$100.00
- 191. CR\$ 90.00
- 192. 3
- 193, 25

194. a) crescente para
$$x \in |R|$$
 $|x| \le -2$ ou $|x| \ge 1$ decrescente para $|x| \le |R|$ $|-2| \le |x| \le 1$

b) crescente para
$$x \in \mathbb{R} \mid -1 \leqslant x \leqslant 0$$
 ou $x \geqslant 1$ decrescente para $x \in \mathbb{R} \mid x \leqslant -1$ ou $0 \leqslant x \leqslant 1$

c) crescente para
$$x \in \mathbb{R} \mid x \leq 0$$
 ou $x > 0$

- 196. a) crescente
- d) decrescente
- b) decrescente
- e) decrescente
- c) crescente f) crescente

- b) crescente para m < 4 decrescente para m > 4 constante para m = 4
- c) crescente para m < -3 decrescente para m > -3constante para m = -3
- e) crescente para m > 1 decrescente para m < 1 constante para m = 1

199. a)
$$f(x) = 0 \Leftrightarrow x = -5 \text{ ou } x = -3 \text{ ou } x = 2$$

ou $x = 6$

$$f(x) > 0 \Leftrightarrow x < -5 \text{ ou } -3 < x < 2 \text{ ou } x > 6$$

$$f(x) < 0 \Rightarrow -5 < x < -3 \text{ ou } 2 < x < 6$$

b)
$$g(x) = 0 \Leftrightarrow x = -3 \text{ ou } x = -1 \text{ ou } x = 3$$

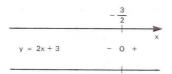
 $g(x) > 0 \Leftrightarrow -3 < x < -1$

$$g(x) < 0 \Leftrightarrow x < -3 \text{ ou } x > -1 \text{ e } x \neq 3$$

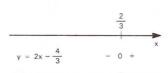
c)
$$h(x) = 0 \Leftrightarrow x = -2$$

$$h(x) > 0 \Leftrightarrow x \neq -2$$

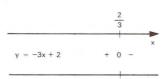
200. a)



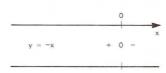
g)



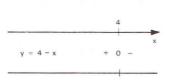
b)



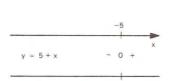
h)



c)



d)



202. x < 3

203.
$$x > \frac{4}{3}$$

204. a)
$$x \ge -\frac{1}{5}$$
 b) $x > \frac{1}{2}$ c) $\forall x \in \mathbb{R}$

$$x > \frac{1}{2}$$
 c) $\forall x \in \mathbb{F}$

e)

$$y = 3 - \frac{x}{2} + 0 -$$

205. a) x > 2

b)
$$x \ge 0$$

c)
$$\nexists x \in \mathbb{R}$$

d)
$$x < -2$$

206. a)
$$S = \{x \in \mathbb{R} \mid x > -4\}$$

b)
$$S = \{x \in \mathbb{R} \mid x \leq -10\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid x \geqslant -\frac{-3}{4} \right\}$$

f)

$$y = \frac{x}{3} + \frac{3}{2} \qquad -0 +$$

208. a) $S = \{x \in \mathbb{R} \mid x \ge 3\}$

b)
$$S = \{x \in \mathbb{R} \mid x > -3\}$$

c)
$$S = \{x \in \mathbb{R} \mid x \geqslant 7\}$$

d)
$$S = \{x \in \mathbb{R} \mid x < 0\}$$

$$f) S = IR$$

209. 7,9 ou mais

211. a)
$$S = \{x \in \mathbb{R} \mid x > 1\}$$

b)
$$S = \left\{ x \in \mathbb{R} \mid x < \frac{1}{2} \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid x > -\frac{2}{3} \right\}$$

212. a)
$$S = \left\{ x \in \mathbb{R} \mid \frac{-1}{3} < x < \frac{5}{3} \right\}$$

b)
$$S = \left\{ x \in \mathbb{R} \mid \frac{1}{2} \leqslant x < 4 \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid \frac{-1}{3} < x < 1 \right\}$$

d)
$$S = Q$$

e)
$$S = \left\{ x \in \mathbb{R} \mid x < \frac{1}{3} \right\}$$

f)
$$S = \{x \in \mathbb{R} \mid x > 1\}$$

213. a)
$$S = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$$

b)
$$S = \{x \in \mathbb{R} \mid x < -3\}$$

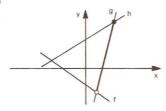
c)
$$S = \{x \in \mathbb{R} \mid 3 \le x \le 6\}$$

d)
$$S = \emptyset$$

e)
$$S = \left\{ x \in \mathbb{R} \mid -1 < x < \frac{2}{9} \right\}$$

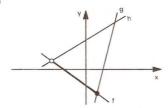
f)
$$S = \{x \in \mathbb{R} \mid -1 < x < 1\}$$

214. a)



$$S = \{x \in \mathbb{R} \mid 1 < x \leq 4\}$$

b)



$$S = \{x \in \mathbb{R} \mid -3 < x \leqslant 1\}$$

c)
$$S = \emptyset$$

215. a)
$$S = \left\{ x \in \mathbb{R} \mid x < -1 \text{ ou } x > \frac{3}{5} \right\}$$

b)
$$S = \left\{ x \in |R| \mid x < -\frac{5}{2} \text{ ou } x > 2 \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid x < -\frac{3}{4} \text{ ou } -\frac{2}{5} < x < 2 \right\}$$

d)
$$S = \left\{ x \in |R| - \frac{2}{3} < x < \frac{4}{3} \text{ ou } x > 6 \right\}$$

e)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -\frac{7}{2} \text{ ou } x \geqslant \frac{1}{6} \right\}$$

f)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{2}{7} \leqslant x \leqslant \frac{5}{2} \right\}$$

g)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -\frac{3}{5} \text{ ou } -\frac{1}{4} \leqslant x \leqslant \frac{3}{2} \right\}$$

h)
$$S = \left\{ x \in \mathbb{R} \mid \frac{1}{4} \leqslant x \leqslant \frac{5}{3} \text{ ou } x \geqslant \frac{7}{2} \right\}$$

216. a)
$$S = \{x \in \mathbb{R} \mid x \neq 3\}$$

b)
$$S = \left\{ x \in \mathbb{R} \mid x < -\frac{8}{3} \right\}$$

c)
$$S = Q$$

d)
$$S = \left\{ x \in \mathbb{R} \mid x < \frac{1}{7} \right\}$$

e)
$$S = IR$$

f)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -\frac{1}{5} \right\}$$

g)
$$S = \left\{-\frac{4}{3}\right\}$$

h)
$$S = \left\{ x \in \mathbb{R} \mid x \geqslant \frac{8}{3} \right\}$$

218. a)
$$S = \left\{ x \in \mathbb{R} \mid x \ge \frac{2}{7} \right\}$$

b)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{1}{3} < x < \frac{2}{5} \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -6 \text{ ou } x = \frac{1}{3} \text{ ou } x = -\frac{5}{4} \right\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid x \geqslant \frac{1}{5} \text{ ou } x = -3 \right\}$$

219. S =
$$\left\{ x \in \mathbb{R} \mid x < 0 \text{ ou } \frac{2}{3} < x < 2 \right\}$$

220. a)
$$S = \left\{ x \in \mathbb{R} \mid x < -2 \text{ ou } x > -\frac{1}{2} \right\}$$

b)
$$S = \left\{ x \in \mathbb{R} \mid x < \frac{2}{3} \text{ ou } x > \frac{3}{2} \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{1}{5} < x \leqslant \frac{3}{4} \right\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -\frac{3}{2} \text{ ou } x > -\frac{1}{3} \right\}$$

221. a)
$$S = \left\{ x \in \mathbb{R} \mid x < \frac{7}{8} \text{ ou } x > \frac{4}{3} \right\}$$

b)
$$S = \{x \in |R| \mid -2 \le x < -1\}$$

c)
$$S = \{x \in \mathbb{R} \mid -3 < x < 15\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid x < -10 \text{ ou } x > \frac{-4}{3} \right\}$$

e)
$$S = \{x \in \mathbb{R} \mid 1 \le x < 2\}$$

f)
$$S = \{x \in |R| | 2 < x \le 3\}$$

222. a)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{3}{4} < x < \frac{1}{2} \text{ ou } x > 4 \right\}$$

b)
$$S = \left\{ x \in |R| \mid x < -\frac{5}{2} \text{ ou} -\frac{3}{5} < x < -\frac{1}{3} \right\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid x \le -\frac{4}{5} \text{ ou} - \frac{1}{4} \le x < \frac{5}{4} \right\}$$

d)
$$S = \left\{ x \in |R| \frac{1}{2} \le x < 3 \text{ ou } x > 5 \right\}$$

223. a)
$$S = \{x \in \mathbb{R} \mid -3 < x < 4 \text{ ou } x > 11\}$$

b)
$$S = \{x \in \mathbb{R} \mid 0 < x < 1 \text{ ou } x > 2\}$$

c)
$$S = \{x \in \mathbb{R} \mid -4 < x < -2\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid x < -\frac{5}{3} \text{ ou} \right.$$

 $\left. -\frac{29}{24} \leqslant x < -\frac{2}{3} \right\}$

e)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{5}{4} < x < -\frac{9}{42} \text{ ou} \right\}$$

 $x > \frac{1}{4}$

f)
$$S = \left\{ x \in |R| \mid x < 1 \text{ ou } \frac{3}{2} < x < 2 \text{ ou} \right\}$$

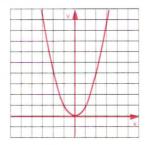
g)
$$S = \left\{ x \in \mathbb{R} \mid -1 < x \leqslant 0 \text{ ou } \frac{1}{3} < x < 1 \text{ ou} \right.$$

 $x \geqslant 3 \right\}$

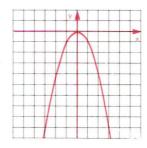
224.
$$S = \{x \in \mathbb{R} \mid x < 0 \text{ ou } x \ge 2\}$$

Capítulo VII

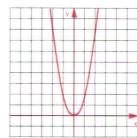
225. a)



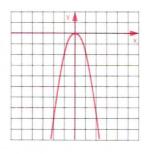
b)



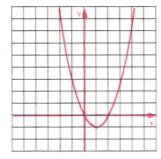
c)



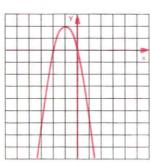
d)



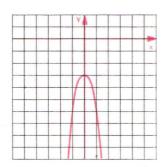
e)



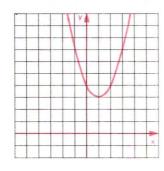
f)



g)



h)



226.
$$m \neq 2$$
 e $m \neq -2$

227.
$$f(x) = -2x^2 + 3x + 1$$

228.
$$abc = -70$$

229. a)
$$x = 1$$
 ou $x = 2$

b)
$$x = 3$$
 ou $x = 4$

c)
$$x = 2$$
 ou $x = \frac{1}{3}$

d) Não existe
$$x \in \mathbb{R}$$
.

e)
$$x = -2$$

f)
$$x = -\frac{1}{2}$$
 ou $x = 2$

g)
$$x = 1 + \sqrt{2}$$
 ou $x = 1 - \sqrt{2}$

h) Não existe
$$x \in \mathbb{R}$$
.

i)
$$x = \frac{\sqrt{2}}{2}$$

j)
$$x = -1$$
 ou $x = \sqrt{3}$

k)
$$x = 0$$
 ou $x = 2$

1)
$$x = \sqrt{2}$$
 ou $x = -\sqrt{2}$

m) Não existe
$$x \in \mathbb{R}$$
.

$$n) x = 0$$

231.
$$S = \{(3, 4), (4, 3)\}$$

232. a)
$$S = [-1, 4]$$

b)
$$S = \{(4, -4), (-1, 6)\}$$

234. a)
$$x = 1$$
 ou $x = -1$ ou $x = 2$ ou $x = -2$

b)
$$x = 3$$
 ou $x = -3$

c)
$$x = \sqrt{3}$$
 ou $x = -\sqrt{3}$

d)
$$x = \sqrt{2}$$
 ou $x = -\sqrt{2}$

e) Não existe
$$x \in \mathbb{R}$$
.

f) Não existe
$$x \in \mathbb{R}$$
.

g)
$$x = 0$$
 ou $x = 2$ ou $x = -2$

h)
$$x = 2$$
 ou $x = -1$

236. m >
$$\frac{-9}{16}$$
 e m $\neq 1$

237. m
$$\leq \frac{17}{16}$$
 e m $\neq -2$

238. m =
$$-1$$
 ou m = $\frac{1}{3}$

239. m = -2 ou m =
$$\frac{2}{5}$$

240. m <
$$-\frac{13}{12}$$

241. m <
$$-\frac{1}{4}$$

242. São as mesmas de $ax^2 + bx + c$, multiplicadas

244. a)
$$\frac{5}{2}$$

d)
$$\frac{29}{4}$$

b)
$$-\frac{1}{2}$$

e)
$$-\frac{29}{2}$$

f)
$$\frac{155}{8}$$

245.
$$m = 2\sqrt{2}$$

246.
$$|x_1 - x_2| = 46$$

247.
$$\frac{b^2 - 2ac}{c^2}$$

248.
$$m = -3$$

$$249. k = 6$$

251. a)
$$x^2 + x - 6 = 0$$

b)
$$4x^2 + 4x - 3 = 0$$

c)
$$x^2 - 5.4x + 2 = 0$$

d)
$$x^2 - (1 - \sqrt{2})x - \sqrt{2} = 0$$

e)
$$x^2 - 2x - 2 = 0$$

252. a)
$$a^2x^2 - (b^2 - 2ac)x + c^2 = 0$$

b)
$$cx^2 + bx + a = 0$$

c)
$$acx^2 - (b^2 - 2ac) + ac = 0$$

d)
$$a^3x^2 + (b^3 - 3abc)x + c^3 = 0$$

253.
$$m = -2 + \sqrt{6}$$
 ou $m = -2 - \sqrt{6}$

254.
$$g(x) = x^2 - \frac{p}{q}x + \frac{1}{q}$$

255.
$$m + n = 80$$

d)
$$V(\frac{1}{4}, \frac{25}{16})$$

b)
$$V(\frac{3}{2}, \frac{9}{4})$$
 e) $V(\frac{1}{2}, \frac{1}{36})$

e)
$$V(\frac{1}{2}, \frac{1}{36})$$

c)
$$V(\frac{5}{4}, -\frac{9}{8})$$

c)
$$V\left(\frac{5}{4}, -\frac{9}{8}\right)$$
 f) $V\left(\frac{7}{6}, -\frac{121}{36}\right)$

257. a)
$$x_m = -\frac{5}{4} e y_m = -\frac{25}{8}$$

b)
$$x_M = 2 e y_M = 12$$

c)
$$x_m = 1 e y_m = 0$$

d)
$$x_m = \frac{7}{4} e y_m = \frac{-9}{16}$$

e)
$$x_M = \frac{5}{2} e y_M = -\frac{3}{4}$$

f)
$$x_M = \frac{4}{3} e y_M = \frac{7}{18}$$

258.
$$m = 2$$

259.
$$m = -2$$
 ou $m = 1$

260.
$$m = -1$$

261. Não existe $m \in \mathbb{R}$.

263.
$$y_M = y_V = \frac{21}{4}$$
; $y_m = f(6) = -7$

264. Não tem máximo, porque a > 0.

$$265. v = 8$$

266.
$$x = 2 e z = 4$$

267. quadrado de lado 5 cm

269. retângulo de lados
$$\frac{5}{8}$$
 e $\frac{5}{2}$

270. retângulo de lados 4 cm e 3 cm

271. retângulo de lados 2 cm e \(\sqrt{3} \) cm

272. retângulo de lados 2 cm e 3 cm

273. 4

275. a) Im =
$$\left\{ y \in \mathbb{R} \mid y \geqslant -\frac{9}{4} \right\}$$

b) Im =
$$\{y \in \mathbb{R} \mid y \leqslant 4\}$$

c) Im =
$$\left\{ y \in \mathbb{R} \mid y \geqslant -\frac{3}{4} \right\}$$

d) Im =
$$\{ y \in \mathbb{R} \mid y \leqslant 16 \}$$

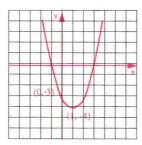
e) Im =
$$\left\{ y \in \mathbb{R} \mid y \leqslant \frac{25}{16} \right\}$$

f) Im =
$$\left\{ y \in \mathbb{R} \mid y \geqslant \frac{1}{2} \right\}$$

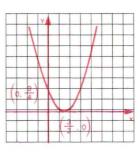
276. m =
$$\frac{10}{3}$$

277. m =
$$\sqrt{10}$$
 ou m = $-\sqrt{10}$

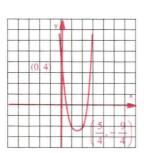
281. a)



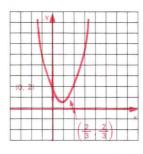
e)



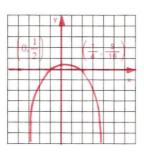
b)



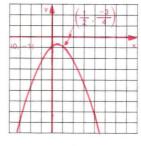
f)



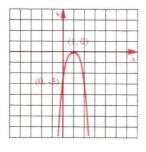
c)



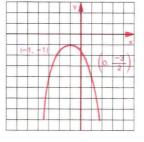
g)



d)



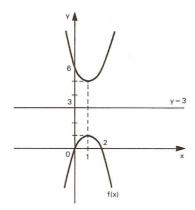
h)



282.
$$0 < c < b < a$$

$$285. a = 2$$

286.
$$g(x) = x^2 - 2x + 6$$



287.
$$A = 9$$

288. a)
$$x^2 - 2x - 3 > 0 \Leftrightarrow x < -1 \text{ ou } x > 3$$

 $x^2 - 2x - 3 = 0 \Leftrightarrow x = -1 \text{ ou } x = 3$
 $x^2 - 2x - 3 < 0 \Rightarrow -1 < x < 3$

b)
$$4x^2 - 10x + 4 > 0 \Leftrightarrow x < \frac{1}{2}$$
 ou $x > 2$
 $4x^2 - 10x + 4 = 0 \Leftrightarrow x = \frac{1}{2}$ ou $x = 2$
 $4x^2 - 10x + 4 < 0 \Rightarrow \frac{1}{2} < x < 2$

c)
$$-x^2 + \frac{1}{2}x + \frac{1}{2} > 0 \Leftrightarrow -\frac{1}{2} < x < 1$$

 $-x^2 + \frac{1}{2}x + \frac{1}{2} = 0 \Leftrightarrow x = -\frac{1}{2} \text{ ou } x = 1$
 $-x^2 + \frac{1}{2}x + \frac{1}{2} < 0 \Leftrightarrow x < -\frac{1}{2} \text{ ou } x > 1$

d)
$$-3x^2 + 6x - 3 = 0 \Leftrightarrow x = 1$$

 $-3x^2 + 6x - 3 < 0 \Leftrightarrow x \neq 1$

e)
$$x^2 - 3x + \frac{9}{4} > 0 \Leftrightarrow x \neq \frac{3}{2}$$

 $x^2 - 3x + \frac{9}{4} = 0 \Leftrightarrow x = \frac{3}{2}$

f)
$$3x^2 - 4x + 2 > 0, \forall x \in \mathbb{R}$$

g)
$$-x^2 + x - 1 < 0, \forall x \in \mathbb{R}$$

h)
$$-\frac{1}{2}x^2 - x - \frac{3}{2} < 0, \forall x \in \mathbb{R}$$

289. $x_1 < x < x_2$ (x deve estar entre as raízes)

290.
$$\Delta < 0$$
 e
$$\begin{cases} a > 0 \Leftrightarrow f(x) > 0, \forall x \in \mathbb{R} \\ a < 0 \Leftrightarrow f(x) < 0, \forall x \in \mathbb{R} \end{cases}$$

294. a)
$$S = \{x \in \mathbb{R} \mid x < 1 \text{ ou } x > 2\}$$

b)
$$S = \{x \in \mathbb{R} \mid -2 < x < 3\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -3 \text{ ou } x \geqslant \frac{1}{3} \right\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{5}{2} \leqslant x \leqslant 4 \right\}$$

e)
$$S = \left\{ x \in \mathbb{R} \mid \frac{1}{4} \leqslant x \leqslant \frac{3}{2} \right\}$$

f)
$$S = \mathbb{R} - \left\{ \frac{1}{2} \right\}$$

$$g) S = IR$$

h) S =
$$\{\frac{3}{2}\}$$

$$i) S = \mathbb{R}$$

$$k) S = \emptyset$$

1)
$$S = \emptyset$$

295. para todo x real

296.
$$A \cap B = \emptyset$$

297.
$$\{x \in \mathbb{R} \mid 0 \le x \le 2\}$$

299.
$$\{x \in \mathbb{R} \mid x \leq -2 \text{ ou } x \geq 2\}$$

301. a)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{3}{2} < x < -\frac{1}{2} \text{ ou} \right.$$

 $0 < x < \frac{1}{2} \right\}$

b)
$$S = \left\{ x \in \mathbb{R} \mid 1 \leqslant x \leqslant \frac{3}{2} \text{ ou} \right\}$$

 $2 \leqslant x \leqslant \frac{5}{2}$

c)
$$S = \{x \in \mathbb{R} \mid -2 < x < 3 \ e \ x \neq 1\}$$

d)
$$S = \{x \in \mathbb{R} \mid x = -3 \text{ ou } 1 \leqslant x \leqslant 2\}$$

e)
$$S = \{x \in \mathbb{R} \mid -1 < x < 1 \text{ ou } x > 2\}$$

f)
$$S = \{x \in \mathbb{R} \mid x \leq 3\}$$

302. a)
$$P_1$$
 (5, 0) $e P_2 \left(-\frac{1}{2}, 0\right)$
b) $S = \left\{x \in |R| - \frac{1}{2} \leqslant x \leqslant 5\right\}$

303. 19

304.
$$\{x \in \mathbb{R} \mid -4 < x < 2 \text{ ou } 3 < x < 4\}$$

305. A =
$$\{x \in \mathbb{R} \mid 0 < x < 2 \text{ ou } 5 < x < 6\}$$

307. a)
$$S = \left\{ x \in \mathbb{R} \mid x < -\frac{5}{4} \text{ ou} \right.$$

$$\left. -\frac{1}{2} < x < 1 \text{ ou } x > 2 \right\}$$
b) $S = \left\{ x \in \mathbb{R} \mid x < -2 \text{ ou} \right.$

$$\left. -\frac{1}{3} < x \leqslant \frac{1}{3} \text{ ou } x \geqslant \frac{2}{3} \right\}$$
c) $S = \left\{ x \in \mathbb{R} \mid x < -3 \text{ ou } x \geqslant 0 \right\}$
d) $S = \left\{ x \in \mathbb{R} \mid -2 < x < \frac{1}{2} \text{ ou } x > \frac{2}{3} \right\}$

f)
$$S = \left\{ x \in \mathbb{R} \mid -2 < x < -\frac{3}{2} \text{ ou} \right.$$

 $\left. -\frac{3}{4} < x < -\frac{1}{3} \right\}$

e) $S = \{x \in \mathbb{R} \mid -1 \le x < 2 \text{ ou } 3 \le x < 5\}$

g)
$$S = \left\{ x \in \mathbb{R} \mid -4 \leqslant x \leqslant -\frac{3}{4} \text{ ou} \right\}$$

 $1 < x < \frac{5}{2}$

h)
$$S = \{x \in \mathbb{R} \mid x > 0\}$$

- 308. a) $\{x \in \mathbb{R} \mid -1 \le x < 1 \text{ ou } x > 2\}$
 - b) $\{x \in \mathbb{R} \mid x \leq 0 \text{ ou } x > 1\}$
 - c) $\{x \in \mathbb{R} \mid x > 2\}$
 - d) $\{x \in \mathbb{R} \mid x < -1 \text{ ou } 0 \le x < 1\}$
 - e) $|t \in \mathbb{R} \mid t < 0|$
 - f) $[x \in \mathbb{R} \mid x < -1 \text{ ou } -1 < x \le 0 \text{ ou } x > 1]$
- 309. $\{x \in \mathbb{R} \mid x < 1\}$
- 310. $\{x \in \mathbb{R} \mid x \ge 3\}$
- 311. a) Significa obter para quais valores x a função está definida.

b)
$$D_f = \{x \in \mathbb{R} \mid -3 < x \leqslant -1 \text{ ou } 1 \leqslant x < 5\}$$

312.
$$D_v = \{x \in \mathbb{R} \mid x < -3 \text{ ou } 2 < x \le 5\}$$

313.
$$\{x \in \mathbb{R} \mid x \ge 2\}$$

314. $-4 \le x < -3$ ou $-1 < x \le 2$ ou $x \ge 3$, $x \in \mathbb{R}$

315. a)
$$S = \{x \in \mathbb{R} \mid 4 < x \le 6\}$$

b)
$$S = \{x \in |R| | -3 \le x < -2\}$$

c)
$$S = \{x \in \mathbb{R} \mid -1 \leq x \leq 1 \text{ ou } 2 \leq x \leq 4\}$$

d)
$$S = \{x \in \mathbb{R} \mid -3 \le x < -1\}$$

e)
$$S = \{x \in \mathbb{R} \mid -1 < x < 0\}$$

$$f) S = \emptyset$$

316. a)
$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 3\}$$

b)
$$S = \{x \in \mathbb{R} \mid -5 \le x < -3\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{1}{2} \leqslant x < \frac{1}{2} \text{ ou} \right\}$$

 $\left\{ x > \frac{3}{2} \right\}$

d) S =
$$\{\frac{1}{2}\}$$

- 317. a) V b) V c)
 - c) F d) F
- e) V

- 318. a) F b) F
- c) F
- d) V e) V

320. a)
$$S = \{x \in \mathbb{R} \mid -3 \le x \le -1 \text{ ou } 1 \le x \le 3\}$$

b)
$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 2\}$$

c)
$$S = \{x \in \mathbb{R} \mid -1 < x < 1\}$$

- d) $S = \emptyset$
- e) $S = \{x \in \mathbb{R} \mid x \leq -1 \text{ ou } x \geq 2\}$
- f) S = IR

322. a) m >
$$\frac{9}{4}$$

f)
$$1 < m < \frac{4}{3}$$

b) m
$$\leq \frac{1}{4}$$

- c) 0 < m < 4
- h) m ≥ 3
- d) $\exists m \in \mathbb{R}$
- i) m < -2
- e) ∄ m ∈ IR
- j) m ≥ 1
- 324. a) -2 < m < 2
- c) m < $-\frac{3}{4}$
- b) m < 1
- d) -1 < m < 2
- 325. p > 11

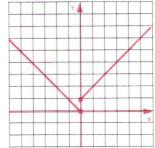
326.
$$-2 < m < -1$$

327.
$$a > \frac{\sqrt{2}}{4}$$

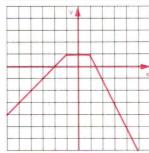
- 328. 0 < m < 8
- **329.** $k \ge 9$
- **331.** a) $0 < m < \frac{7}{9}$
 - b) m > 1
 - c) -2 < m < 0
 - d) -3 < m < x
- 332. m < -1
- 333. -2 < m < 2
- 334. k = 1
- 336. $m < \frac{3}{2}$ ou $3 < m \leqslant \frac{7}{2}$
- 337. m < $\frac{-2\sqrt{2}}{3}$
- 338. m < -5
- 339. −5 < m < −1
- 340. 1 < m < 4
- 341. $-\frac{3}{2}$ < m < -1
- 342. $0 < m < \frac{1}{2}$
- 343. $m < \frac{3}{2} e m \neq 0 \text{ ou } m > 3$
- 344. m > 1
- 345. $-\sqrt{2}$ < m < -1
- 346. -1 < m < 2
- 347. m > 1
- 348. m < -2 ou 2 < m < 3
- 349. $-\frac{1}{4} \le m < 0 \text{ ou } m > 2$
- 350. k = 1
- 351. a) 49
- b) 39 c) 6
- 352. m $< \frac{5}{2}$
- 353. duas raízes negativas

Capítulo VIII

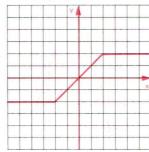
354. a)



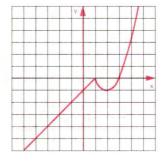
b)

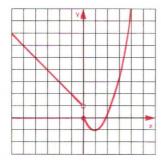


c)



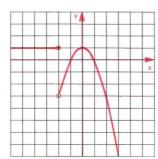
d)



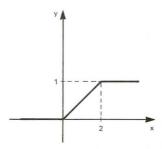


355.

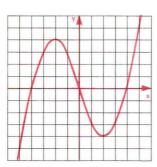
f)



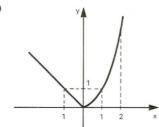
356. a)



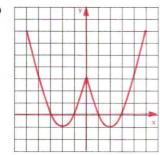
g)



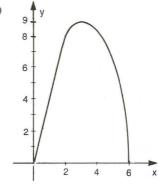
b)



h)



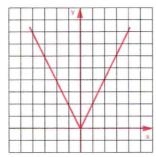
358. x = 4 359. a)



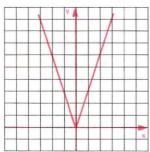
b)
$$f(x) = 5 para x = \frac{5}{4} ou x = 5$$

- 360. a) não b) sim
- c) sim d) não
- e) sim

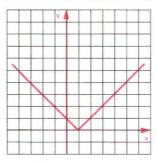
361. a)



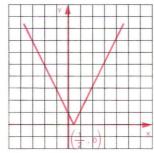
b)



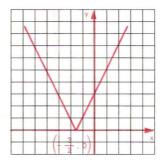
363. a)



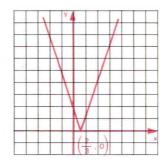
b)



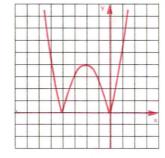
c)



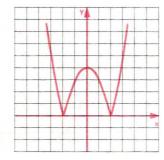
d)



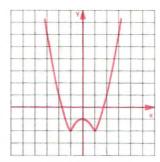
e)



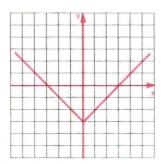
f)



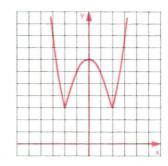
d)

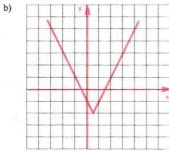


365. a)

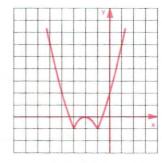


e)

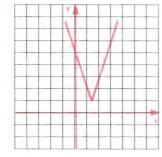




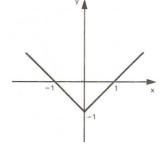
f)



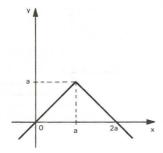
c)



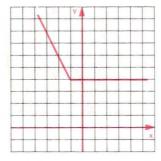
366. a)



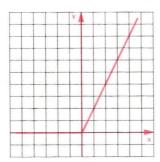
b)



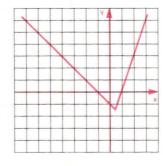
d)



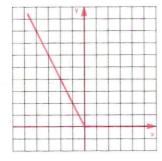
. a)



e)



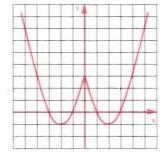
b)



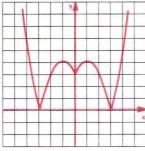
f)

c)

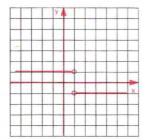
g)



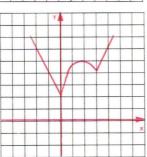
h)



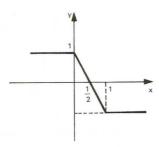
373.



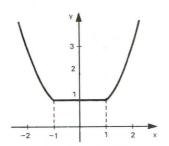
i)



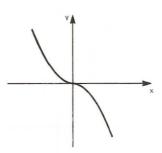
375. a)

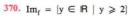


369.



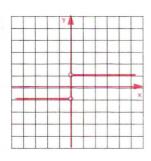
b)



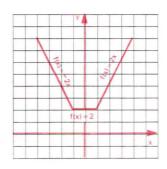


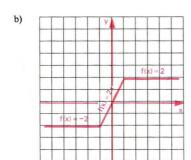
371. a, b, c

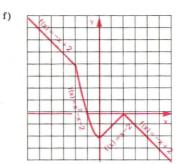
372.

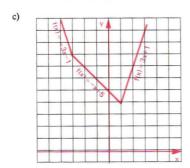


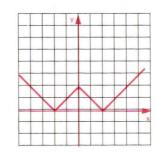
376. a)



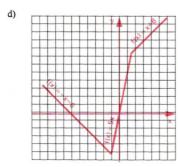


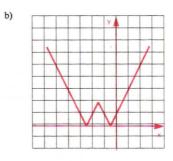


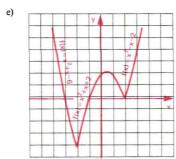


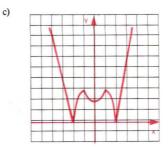


378. a)



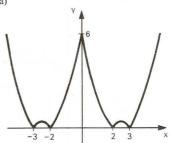




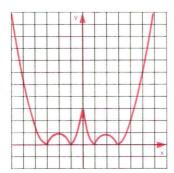


d)

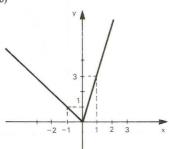
379. a)

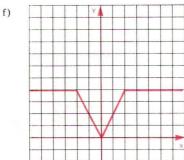


e)

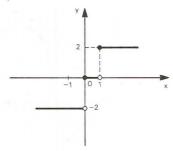


b)





c)



g)

380. a, b, c, d

381. a)
$$S = \{1, -5\}$$

b) $S = \left\{1, -\frac{1}{3}\right\}$
c) $S = \left\{\frac{5}{4}\right\}$
d) $S = \emptyset$
e) $S = \{-1, 1, 2, 4\}$

f)
$$S = \left\{-\frac{1}{2}, \frac{1}{2}, 2, 3\right\}$$

g)
$$S = \{1, 3\}$$

382. k > 1

383. a)
$$S = \left\{-\frac{3}{2}, -\frac{1}{4}\right\}$$

b)
$$S = \left\{2, -\frac{1}{3}\right\}$$

c)
$$S = \{-6, -1, 1, 4\}$$

d)
$$S = \left\{ -\frac{3}{2}, \frac{1}{3}, 1 \right\}$$

384. a) S =
$$\left\{\frac{1}{3}\right\}$$

c)
$$S = \{4, 2\}$$

d)
$$S = \{-13, -6\}$$

e)
$$S = \left\{ x \in \mathbb{R} \mid x \geqslant \frac{2}{3} \right\}$$

f)
$$S = \left\{ x \in \mathbb{R} \mid x \geqslant \frac{4}{3} \right\}$$

385.
$$S = \{-2, 2\}$$

387. a)
$$S = \{x \in \mathbb{R} \mid -1 \leqslant x \leqslant 0\}$$

b)
$$S = \{x \in \mathbb{R} \mid x < 0 \text{ ou } x > 1\}$$

388. a)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{2}{3} < x < 2 \right\}$$

b)
$$S = \{x \in \mathbb{R} \mid 1 \le x \le 2\}$$

c)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{1}{3} \leqslant x \leqslant 3 \right\}$$

d)
$$S = \left\{-\frac{4}{3}\right\}$$

e)
$$S = \emptyset$$

f)
$$S = \{x \in \mathbb{R} \mid x < -1 \text{ ou } x > 2\}$$

g)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -\frac{8}{5} \text{ ou } x \geqslant 0 \right\}$$

h)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant \frac{1}{3} \text{ ou } x \geqslant 1 \right\}$$

i)
$$S = \left\{ x \in \mathbb{R} \mid x \neq \frac{5}{3} \right\}$$

$$i) S = IR$$

k)
$$S = \{x \in \mathbb{R} \mid -2 \le x < 0 \text{ ou } 2 < x \le 4\}$$

389. a)
$$S = \{x \in \mathbb{R} \mid 1 < x < 2 \text{ ou } 3 < x < 4\}$$

b)
$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } -1 < x < 2 \text{ ou } x > 3\}$$

c)
$$S = \{x \in \mathbb{R} \mid x \leqslant -1 \text{ ou } 2 \leqslant x \leqslant 3 \text{ ou } x \geqslant 6\}$$

d)
$$S = \{x \in \mathbb{R} \mid -2 \leqslant x \leqslant 1 \text{ ou } 2 \leqslant x \leqslant 5\}$$

e)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{1}{4} < x < \frac{5}{8} e x \neq \frac{1}{3} \right\}$$

f)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant \frac{1}{5} \text{ ou } x \geqslant 1 \right\}$$

g)
$$S = \{x \in \mathbb{R} \mid x < -3 \text{ ou } -1 < x < 1 \text{ ou } x > 3\}$$

h)
$$S = \{x \in \mathbb{R} \mid x \leq -3 \text{ ou } -1 \leq x \leq 0 \text{ ou } x \geq 2\}$$

i)
$$S = \{x \in \mathbb{R} \mid -3 \le x \le 0 \text{ ou } 1 \le x \le 4\}$$

390. 29

392. 5

393.
$$S = \{x \in \mathbb{R} \mid -1 < x < 2 \text{ ou } 4 < x < 7\}$$

394. S =
$$\{x \in \mathbb{R} \mid -2 < x < -1 \text{ ou } 0 < x < 1\}$$

395. 5

397. -1, 0, 3 e 4

399. a)
$$S = \{x \in \mathbb{R} \mid x \ge 3\}$$

b)
$$S = \{x \in \mathbb{R} \mid x < 5\}$$

c)
$$S = \{x \in \mathbb{R} \mid -1 \le x \le 1\}$$

$$d) S = IR$$

e)
$$S = \emptyset$$

f)
$$S = \{x \in \mathbb{R} \mid 3 \leq x \leq 6\}$$

g)
$$S = \{x \in |R| | 4 < x < 6\}$$

400.
$$S = \{x \in \mathbb{R} \mid 1 < x < 4\}$$

401. a, b, c, e

402.
$$S = \{x \in \mathbb{R} \mid x > 0\}$$

404. a)
$$S = \{x \in \mathbb{R} \mid x < -5 \text{ ou } 1 < x < 5\}$$

b)
$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 0\}$$

c)
$$S = \{x \in \mathbb{R} \mid x \le -5 \text{ ou } -3 \le x \le 7\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid -3 < x < \frac{11}{3} \right\}$$

e)
$$S = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 4\}$$

f)
$$S = \{x \in \mathbb{R} \mid x \leq 0 \text{ ou } x \geq 3\}$$

g)
$$S = \emptyset$$

405. S =
$$\{x \in \mathbb{R} \mid x \le 0 \text{ ou } x \ge 6\}$$

406. S =
$$\{x \in \mathbb{R} \mid x \ge -3\}$$

Capítulo IX

407. a)

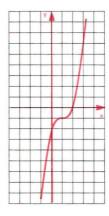
b)

c)

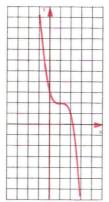
d)

e)

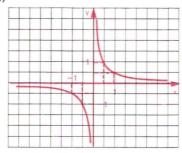
f)



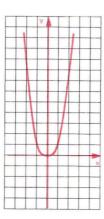
g)



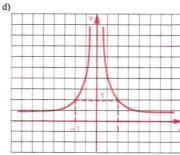
b)



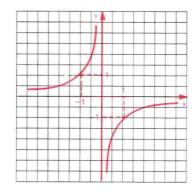
h)



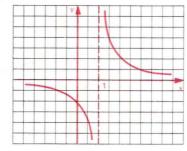
c)



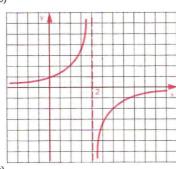
408. a)



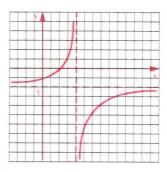
410. a)



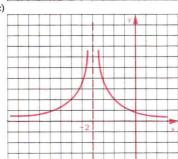
b)



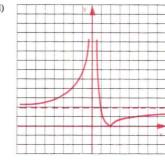
c)



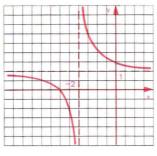
c)



d)

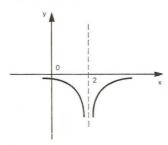


411. a)

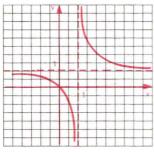


414. a)

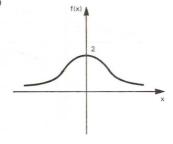
413. $\frac{35}{12}$



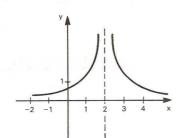
b)



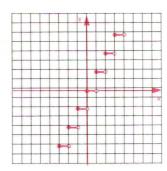
b)



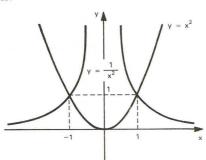
c)



418. a)

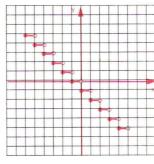


415.



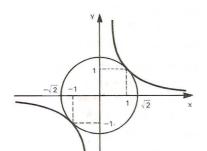
 $S = \{(-1, 1), (1, 1)\}$

b)

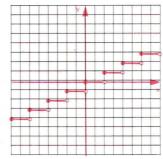


416. $x = \frac{1 \pm \sqrt{5}}{2}$

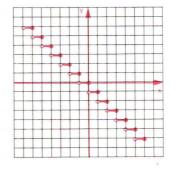
417.



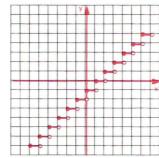
420. a)



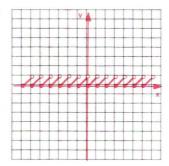
b)



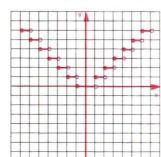
c)



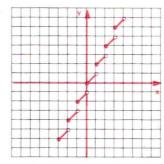
g)



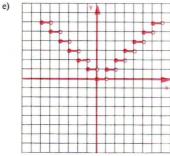
d)



h)



f)



Capítulo X

422. a)
$$(f \circ g)(x) = 4x^2 - 2x - 2$$

 $(g \circ f)(x) = 5 + 2x - 2x^2$
b) $(f \circ g)(-2) = 18$, $(g \circ f)(-2) = -7$
c) $x = 2$ ou $x = -\frac{3}{2}$

423. (f
$$\circ$$
 g) (x) = $x^4 - 6x^2 + 6$
(g \circ f) (x) = $x^4 - 8x^3 + 18x^2 - 8x$

424.
$$(f \circ g)(x) = 2, (g \circ f)(x) = 5$$

425. a)
$$(f \circ g)(x) = x^2 - 6x + 11$$

b) $(g \circ f)(x) = x^2 - 1$
c) $(f \circ f)(x) = x^4 + 4x^2 + 6$
d) $(g \circ g)(x) = x - 6$

426.
$$f(-x) = -x^3 - 3x^2 - 2x - 1$$

 $f\left(\frac{1}{x}\right) = \frac{1}{x^3} - \frac{3}{x^2} + \frac{2}{x} - 1$
 $f(x-1) = x^3 - 6x^2 + 11x - 7$

$$427. a = 1$$

431. a)
$$D(f \circ g) = \left\{ x \in \mathbb{R} \mid x \leqslant \frac{1}{2} \text{ ou } x \geqslant 2 \right\}$$

b)
$$D(g \circ f) = \{x \in \mathbb{R} \mid x \geqslant 1\}$$

432. a)
$$D(f \circ g) = \mathbb{R} - \left\{ -\frac{1}{2} \right\}$$

 $(f \circ g)(x) = \frac{2x+4}{2x+1}$

b)
$$D(g \circ f) = |R - \{2\}|$$

 $(g \circ f)(x) = \frac{5x - 4}{x - 2}$

433.
$$[(h \circ g) \circ f](x) = 12x^2 + 12x + 2$$

434.
$$[h \circ (g \circ f)](x) = 2x^2 - 2x + 7$$

435.
$$\theta = \pm \frac{\pi}{12} + k\pi$$
, $\theta = \frac{5\pi}{12} + k\pi$ ou $\theta = \frac{7\pi}{12} + k\pi$

436. (a, 3a - 3),
$$\forall a \in \mathbb{R}$$
 437. $a = \frac{m+4}{m+2}$

438. a, c, e: falsos; b, d, f: verdadeiros

439.
$$f(g(x)) = 3$$

440.
$$(f \circ [f \circ f])(x) = x$$

441.
$$((h \circ f) \circ g) (2) = 5$$

442.
$$x = \frac{-1}{2}$$

443.
$$d(a-1) = b(c-1)$$

445.
$$g(x) = \frac{x^2 - 2x - 4}{2}$$

447.
$$f(x) = \frac{x^2 + 2x - 1}{2}$$

448.
$$f(x) = \frac{2x+4}{x-1}$$
 para $x \ne 1$

449.
$$a = 1$$
; $b = \frac{1}{2}$

450.
$$b = -3$$

451.
$$D_{f(x)} = \left\{ x \in \mathbb{R} \mid x \neq \frac{1}{2} \right\}$$

452.
$$f\left(\frac{-12}{15}\right) = 7$$

454. a)
$$k = -1$$
; $t = 3$
b) $\left\{ x \in \mathbb{R} \mid x \leqslant \frac{1}{2} \text{ ou } x > 3 \right\}$

456. (f \circ g) (x) =
$$\begin{cases} 4x^2 + 4x \text{ se } x \ge -\frac{1}{2} \\ 4x + 3 \text{ se } x < -\frac{1}{2} \end{cases}$$

$$(g \circ f) (x) = \begin{cases} 2x^2 - 8x + 9 \text{ se } x \ge 2\\ 4x - 3 \text{ se } x < 2 \end{cases}$$

457. (f \circ g) (x) =
$$\begin{cases} 9x^2 - 12x + 6 & \text{se } x \ge 1 \\ -\frac{1}{3x} & \text{se } \frac{1}{3} < x < 1 \\ -9x^2 + 12x & \text{se } x \le \frac{1}{3} \end{cases}$$

$$(g \circ f) (x) = \begin{cases} -3x^2 - 4 \text{ se } x \leqslant -1\\ \frac{2x - 7}{x - 2} \text{ se } -1 \leqslant x < 1\\ 3x^2 - 10 \text{ se } x \geqslant 1 \end{cases}$$

458.
$$(f \circ g)(x) = \begin{cases} 4x + 1 \text{ se } x > 2\\ 1 - 4x^2 \text{ se } -1 \leqslant x \leqslant 1\\ x^4 + x^2 \text{ se } x < -1 \text{ ou } 1 < x \leqslant 2 \end{cases}$$

$$(g \circ f)(x) = \begin{cases} 4x - 2 \text{ se } x > \frac{5}{4} \\ -16x^2 + 24x - 8 \text{ se } 0 \leqslant x \leqslant \frac{5}{4} \\ x^2 - 3x + 3 \text{ se } x < 0 \end{cases}$$

459. f (x) =
$$\begin{cases} x^2 + 3x - 1 \text{ se } x \ge -1 \\ 2x + 9 \text{ se } x < -1 \end{cases}$$

- 460. a) injetora
 - b) sobrejetora
 - d) bijetora
 - e) não é injetora nem sobrejetora
- 461. a) injetora
 - b) bijetora
 - c) sobrejetora
 - d) não é injetora nem sobrejetora
- 462. a) III
- c) II e) II

d) I f) III

g) III h) II

463. b = 2

b) IV

464.
$$a = \frac{3}{4}$$

465.
$$B = \{ y \in \mathbb{R} \mid -2 \le y < 3 \}$$

466. B =
$$\{y \in \mathbb{R} \mid 0 \le y \le 5\}$$

468. sobrejetora

469. a, b, e, f: falsas; c, d, g: verdadeiras

470. b, d, h: falsas; a, c, e, f, g: verdadeiras

471. a, c: falsas; b, d, e, f: verdadeiras

472. a, c, d: falsas; b, e: verdadeiras

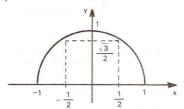
473. a)
$$D_f = \{x \in \mathbb{R} \mid -1 \le x \le 1\}$$

b)
$$Im_f = \{y \in B \mid 0 \le y \le 1\}$$

c) Não, porque, por exemplo,

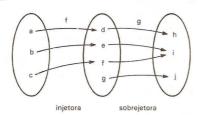
$$f\left(\frac{-1}{2}\right) = f\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}.$$

d)



- 474. a, b, d: falsas; c, e: verdadeiras
- 478. As funções I_A e I_B são iguais se, e somente se, A = B.
- 479. $m \leq n, m \geq n, m = n$
- 480, 12
- 481. 6

482.



g ○ f não é injetora nem sobrejetora.

485. 8

486. a)
$$f^{-1}(x) = \frac{x-3}{2}$$

b)
$$g^{-1}(x) = \frac{3x-1}{4}$$

c)
$$h^{-1}(x) = \sqrt[3]{x-2}$$

d)
$$p^{-1}(x) = 1 + \sqrt[3]{x-2}$$

e)
$$q^{-1}(x) = x^3 - 2$$

f)
$$r^{-1}(x) = (x + 1)^3$$

g)
$$s^{-1}(x) = \sqrt[3]{1-x^3}$$

487.
$$f^{-1}(2) = 0$$

488.
$$f^{-1}(x) = \sqrt[3]{x-1}$$

- **489.** Não, pois f não é injetora, por exemplo: f(-1) = f(1) = I; portanto f não é bijetora.
- 490. a, c, e: falsas; b, d: verdadeiras

$$f^{-1}(x) = \sqrt{x}$$

b)
$$f^{-1}: \mathbb{R}_+ \longrightarrow A$$

$$f^{-1}(x) = 1 - \sqrt{x}$$

c)
$$f^{-1}: \mathbb{R}_- \longrightarrow A$$

$$f^{-1}(x) = 2 - \sqrt{-x}$$

d)
$$f^{-1} : \mathbb{R}_{-} \to A$$

 $f^{-1}(x) = -1 - \sqrt{-x}$

e)
$$f^{-1}: B \longrightarrow \mathbb{R}_-$$

$$f^{-1}(x) = -\sqrt{x-1}$$

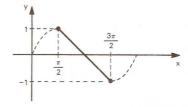
$$f) f^{-1} : B \longrightarrow \mathbb{R}_{+}$$

$$f^{-1}(x) = \sqrt{4-x}$$

g)
$$f^{-1}: B \longrightarrow \mathbb{R}_{-}$$

$$f^{-1}(x) = -\sqrt{x+1}$$

493



a, d, e: falsas; b, c: verdadeiras

494. b, f: não; a, c, d, e: sim

496. a)
$$f^{-1} : \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{3\}$$

$$f^{-1}(x) = \frac{3x + 3}{x - 1}$$

b)
$$f^{-1} : |R - \{2\} \longrightarrow |R - \{-1\}|$$

 $f^{-1}(x) = \frac{3-x}{x-2}$

c)
$$f^{-1} : \mathbb{R} - \{-1\} \longrightarrow \mathbb{R} - \{3\}$$

 $f^{-1}(x) = \frac{3x+4}{x+1}$

d)
$$f^{-1} : \mathbb{R} - \left\{ \frac{5}{3} \right\} \longrightarrow \mathbb{R} - \left\{ \frac{1}{3} \right\}$$

 $f^{-1} (x) = \frac{x+2}{3x-5}$

e)
$$f^{-1} : \mathbb{R} - \{4\} \longrightarrow \mathbb{R}^*$$

 $f^{-1}(x) = \frac{2}{x - 4}$

f)
$$f^{-1}: \mathbb{R} - \{3\} \longrightarrow \mathbb{R} - \{3\}$$

 $f^{-1}(x) = \frac{3x + 2}{x - 3}$

497.
$$(f \circ g^{-1}) (0) = 8$$

$$498. a = -1$$

500. É o
$$\sqrt{17}$$
, pois $f^{-1}(\sqrt{17}) = 3$, isto é, $f(3) = \sqrt{17}$.

502. a)
$$f^{-1}: B \longrightarrow A$$

 $f^{-1}(x) = 1 + \sqrt{x+1}$

b)
$$f^{-1}: B \longrightarrow A$$

 $f^{-1}(x) = -1 + \sqrt{x-1}$

c)
$$f^{-1} : B \longrightarrow A$$

 $f^{-1}(x) = 2 - \sqrt{x+1}$

d)
$$f^{-1}: B \longrightarrow A$$

 $f^{-1}(x) = \frac{3 + \sqrt{4x + 1}}{2}$

e)
$$f^{-1} : B \longrightarrow A$$

 $f^{-1}(x) = 2 + \sqrt{9 - x}$

f)
$$f^{-1}: B \longrightarrow A$$

 $f^{-1}(x) = -1 - \sqrt{5 - x}$

g)
$$f^{-1}: B \longrightarrow A$$

 $f^{-1}(x) = \frac{5 + \sqrt{8x + 9}}{4}$

504. a)
$$f^{-1}(x) = \begin{cases} \frac{x-3}{2} & \text{se } x \ge 7 \\ \frac{x-1}{3} & \text{se } x < 7 \end{cases}$$

b)
$$f^{-1}(x) = \begin{cases} \frac{5-x}{3} & \text{se } x \leq 8 \\ \frac{4-x}{4} & \text{se } x > 8 \end{cases}$$

c)

$$f^{-1}(x) = \begin{cases} \sqrt{x} \text{ se } x \ge 0 \\ \frac{x}{2} \text{ se } x < 0 \end{cases}$$

d)

$$f^{-1}(x) = \begin{cases} \sqrt[3]{x+2} & \text{se } x < -3\\ \frac{x-1}{4} & \text{se } x \geqslant -3 \end{cases}$$

e)
$$f^{-1}(x) = \begin{cases} x^2 + 3 \text{ se } x \ge 0 \\ 3 - \sqrt[3]{x} \text{ se } x < 0 \end{cases}$$

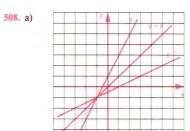
f)

$$f^{-1}(x) = \begin{cases} 2 + \sqrt{x - 3} \text{ se } x \ge 3\\ \frac{x + 1}{2} \text{ se } -3 < x < 3\\ -1 - \sqrt{-x - 3} \text{ se } x \le -3 \end{cases}$$

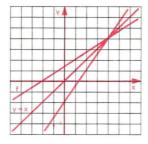
505. Não, pois f não é injetora, por exemplo: f(-2) = f(1) = 3, portanto f não é bijetora.

506.
$$f^{-1}(x) = \begin{cases} x - 5 \text{ se } x \ge 7 \\ \frac{x + 3}{5} \text{ se } -8 \le x < 7 \\ \frac{x + 5}{3} \text{ se } x < -8 \end{cases}$$

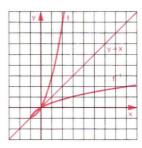
$$e f^{-1} (42) = 37$$



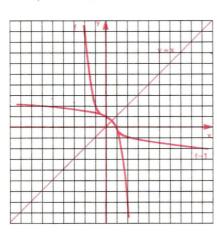
b)



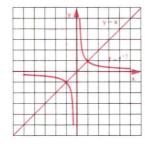
e)



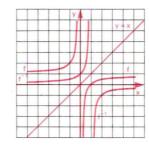
c)



f)



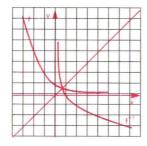
g)



d)

h)

i)



510. a)
$$(g \circ f)^{-1} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$(g \circ f)^{-1}(x) = \frac{x+2}{12}$$

b)
$$(g \circ f)^{-1} : \mathbb{R} \longrightarrow \mathbb{R}$$

$$(g \circ f)^{-1}(x) = \sqrt[3]{\frac{x-3}{2}}$$

c)
$$(g \circ f)^{-1} : C \longrightarrow \mathbb{R}_+$$

 $(g \circ f)^{-1} (x) = \sqrt{4-x}$

d)
$$(g \circ f)^{-1} : \mathbb{R}_+ \longrightarrow A$$

$$(g \circ f)^{-1} (x) = \frac{3 + \sqrt{x}}{2}$$

e)
$$(g \circ f)^{-1} : C \longrightarrow A$$

 $(g \circ f)^{-1} (x) = \sqrt{x^2 - 3}$

511. Não, pois g não é injetora, por exemplo: g(-1) = g(1) = 0; portanto $g \circ f$ não é bi-

512.
$$[h \circ (g \circ f)]^{-1} : B \longrightarrow A$$

$$[h \circ (g \circ f)]^{-1}(x) = \frac{2 - \sqrt{x+1}}{4}$$

Apêndice I

514. a)
$$S = \{6\}$$

b)
$$S = \{-4\}$$

c)
$$S = \{1, 4\}$$

d)
$$S = \left\{ \frac{7 + \sqrt{33}}{4}, \frac{7 - \sqrt{33}}{4} \right\}$$

e) S =
$$\left\{0, \frac{7}{3}\right\}$$

$$f) S = \{77\}$$

g)
$$S = \{13\}$$

h)
$$S = \{3\}$$

i)
$$S = \{3, 4\}$$

$$j) S = \{4\}$$

k)
$$S = \{0\}$$

1)
$$S = \{1\}$$

m)
$$S = \emptyset$$

n) S =
$$\left\{0, \frac{1}{4}\right\}$$

o)
$$S = \left\{ \frac{5}{4} \right\}$$

p)
$$S = \{0, 2\}$$

$$515. S = \{5\}$$

516.
$$x = 2$$

517. c, d, f, g: falsos; a, b, e: verdadeiros

518.
$$S = \emptyset$$

520. a)
$$S = \{4, 9\}$$

b) S =
$$\{\frac{1}{9}\}$$

c)
$$S = \emptyset$$

d)
$$S = \{4 + 2\sqrt{3}\}$$

e)
$$S = \{1, \sqrt[3]{25}\}$$

$$f) S = \{1\}$$

g)
$$S = \{16\}$$

h)
$$S = \{81\}$$

i)
$$S = \left\{1, \frac{1}{16}\right\}$$

j)
$$S = \left\{1, \frac{1}{16}\right\}$$

522. a)
$$S = \left\{-2, \frac{1}{3}\right\}$$

b)
$$S = \{5, -1\}$$

c)
$$S = \left\{4, -3, \frac{1 + \sqrt{29}}{2}, \frac{1 - \sqrt{29}}{2}\right\}$$

$$d) S = 0$$

d)
$$S = \emptyset$$

e) $S = \left\{3, -\frac{5}{5}\right\}$

523.
$$S = \{0, 1, 4\}^{5}$$

525. a)
$$S = [64]$$

d)
$$S = \{34\}$$

e) S =
$$\left\{ \frac{177}{4} \right\}$$

c) S =
$$\{\frac{5}{4}\}$$

f)
$$S = \{40\}$$

526. a)
$$S = \{0, 4\}$$

d)
$$S = \{1, 17\}$$

b)
$$S = \{2\}$$

e)
$$S =$$

c)
$$S = \{2, 6\}$$

g)
$$S = \left\{ \frac{4}{\sqrt{5}}, -\frac{4}{\sqrt{5}} \right\}$$

527. a)
$$S = [6]$$

d)
$$S = \{3\}$$

b) S =
$$\left\{ \frac{5}{11} \right\}$$

e)
$$S = [3a]$$

c)
$$S = [4]$$

529. a)
$$S = [3]$$

c)
$$S = \{2\}$$

b)
$$S = \{19\}$$

d)
$$S = \{3\}$$

530. a)
$$S = \{3\}$$

d)
$$S = \{4\}$$

b)
$$S = \left\{\frac{2}{3}\right\}$$
 e) $S = \{3\}$

e)
$$S = [3]$$

c)
$$S = \{3, 4\}$$

532. a)
$$S = \{1\}$$

c)
$$S = \{2\}$$

b)
$$S = \left\{\frac{1}{4}\right\}$$

533. a)
$$S = \{1\}$$

c)
$$S = \{0\}$$

b) S =
$$\left\{ \frac{25}{9} \right\}$$

534.
$$\begin{cases} a \leqslant b \implies S = [a] \\ a > b \implies S = [b] \end{cases}$$

$$a > b \implies S = b$$

535. S =
$$\left\{ \frac{3a}{4} \right\}$$

536.
$$(a = b = 0 \implies S =$$

536.
$$\begin{cases} a = b = 0 \implies S = \mathbb{R}, \\ a \ge b > 0 \implies S = \left\{ \frac{(a - b)^2}{4b} \right\} \\ a < b \text{ ou } b = 0 \implies S = \emptyset \end{cases}$$

$$a < b \text{ ou } b = 0 \implies S = \emptyset$$

537. a)
$$b \ge 1 \implies S = \left\{\frac{2a\sqrt{b}}{b+1}\right\}$$

b)
$$a = b \implies S = \{x \in \mathbb{R}_+ \mid x \ge a\}$$

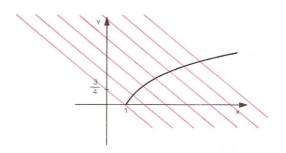
 $a \ne b \implies S = \{a + b\}$

c) b > a
$$\implies$$
 S = $\left\{ \frac{2a^2b}{a^2 + b^2} \right\}$

538.
$$a < 0 \ e \ |b| \ge |a| \longrightarrow S = \left\{0, \frac{5a^2 - b^2}{4a}\right\}$$

539.
$$a \ge \frac{3}{4}$$
; $x = \frac{(2a+1) - \sqrt{4a-3}}{2}$ porque a

interseção se dá nos pontos de menor abscissa.



540. a)
$$S = \{(9, 4), (4, 9)\}$$

b)
$$S = \{(10 + 4\sqrt{6}, 10 - 4\sqrt{6})\}$$

c)
$$S = \{(2, 8), (8, 2)\}$$

d)
$$S = \{(9, 4), (4, 9)\}$$

541. a)
$$S = \left\{ (4, 2), \left(-\frac{9}{2}, \frac{41}{12} \right) \right\}$$

543. a)
$$S = \{2\}$$

b) S =
$$\left\{ \frac{7}{4} \right\}$$

c)
$$S = \{-16\}$$

d)
$$S = \{4, -3\}$$

e)
$$S = \left\{-\frac{2}{3}, 3\right\}$$

f)
$$S = [4 + \sqrt{3}, 4 - \sqrt{3}]$$

g)
$$S = \{0\}$$

h)
$$S = \left\{0, \frac{3+\sqrt{3}}{4}, \frac{3-\sqrt{3}}{4}\right\}$$

i)
$$S = \left\{0, \frac{1}{4}, \frac{3}{2}\right\}$$

j)
$$S = \left\{0, -3, \frac{1}{4}\right\}$$

546.
$$S = \{-2, 7\}$$

$$547. x^2 = 80$$

548.
$$S = \left\{1, \frac{3}{2}, 2\right\}$$

549.
$$S = \{1, 2, 10\}$$

551. a) S =
$$\{0\}$$

b) S = $\{\frac{\sqrt{5}}{2}, -\frac{\sqrt{5}}{2}\}$
c) S = $\{\frac{4}{5}\}$

552.
$$S = \{(8, 64), (64, 8)\}$$

Apêndice II

e) $S = \emptyset$

554. a)
$$S = \left\{ x \in \mathbb{R} \mid \frac{2}{3} \leqslant x < 2 \right\}$$

b) $S = \left\{ x \in \mathbb{R} \mid -\frac{5}{2} \leqslant x \leqslant 2 \right\}$
c) $S = \left\{ x \in \mathbb{R} \mid -2 < x \leqslant -1 \text{ ou } 2 \leqslant x < 3 \right\}$
d) $S = \left\{ x \in \mathbb{R} \mid -\frac{1}{3} \leqslant x \leqslant \frac{2}{3} \text{ ou } \right\}$
 $1 \leqslant x \leqslant 2$

555. a)
$$S = \left\{ x \in \mathbb{R} \mid 1 \leqslant x \leqslant \frac{4}{3} \right\}$$

b) $S = \left\{ x \in \mathbb{R} \mid x > 4 \right\}$
c) $S = \left\{ x \in \mathbb{R} \mid x > 8 \right\}$
d) $S = \left\{ x \in \mathbb{R} \mid x \geqslant 1 \right\}$
e) $S = \left\{ x \in \mathbb{R} \mid -1 \leqslant x < \frac{7 - \sqrt{17}}{2} \right\}$
f) $S = \left\{ x \in \mathbb{R} \mid 2 \leqslant x \leqslant 3 \right\}$

g) $S = \{x \in \mathbb{R} \mid x > 1\}$

h)
$$S = \left\{ x \in \mathbb{R} \mid -1 < x \leqslant -\frac{1}{2} \text{ out} \right\}$$

 $3 \leqslant x < 12$
i) $S = \left\{ x \in \mathbb{R} \mid \frac{1+\sqrt{13}}{6} \leqslant x \leqslant 1 \text{ out} \right\}$
 $x \geqslant 2$

556. S =
$$\left\{ x \in \mathbb{R} \mid x < \frac{3 - \sqrt{41}}{16} \right\}$$

558. a)
$$S = \{x \in \mathbb{R} \mid x > 11\}$$

b) $S = \{x \in \mathbb{R} \mid x \geqslant -2\}$
c) $S = \{x \in \mathbb{R} \mid x \geqslant \frac{3}{4}\}$
d) $S = \{x \in \mathbb{R} \mid x < \frac{1}{4} \text{ ou } x > 3\}$
e) $S = \{x \in \mathbb{R} \mid x \leqslant 1 - \sqrt{3} \text{ ou } x \geqslant 1 + \sqrt{3}\}$
f) $S = \{x \in \mathbb{R} \mid -4 \leqslant x \leqslant \frac{1}{5}\}$
g) $S = \emptyset$

559. a)
$$S = \{x \in |\mathbb{R} \mid 1 < x < 2\}$$

b) $S = \{x \in |\mathbb{R} \mid x \leqslant 2\}$
c) $S = \{x \in |\mathbb{R} \mid x \geqslant 2 - \sqrt{6}\}$
d) $S = \{x \in |\mathbb{R} \mid x < -\frac{1}{2} \text{ ou } x > 2\}$
e) $S = \{x \in |\mathbb{R} \mid x \leqslant 1\}$
f) $S = \{x \in |\mathbb{R} \mid x \leqslant -2 - 2\sqrt{2} \text{ ou } -2 + 2\sqrt{2} \leqslant x \leqslant \frac{6 + 2\sqrt{3}}{3}\}$
g) $S = \emptyset$

h)
$$S = |R|$$

i) $S = \{x \in |R| | -1 \le x \le 2\}$
j) $S = \left\{x \in |R| | -\frac{1}{2} \le x < 2\right\}$

561. a)
$$S = \left\{ x \in \mathbb{R} \mid -\frac{3}{5} \leqslant x < 0 \text{ ou } x > 3 \right\}$$

b) $S = \left\{ x \in \mathbb{R} \mid -6 \leqslant x < 0 \text{ ou } 3 < x \leqslant 4 \right\}$
c) $S = \left\{ x \in \mathbb{R} \mid 0 < x \leqslant 2 \right\}$
d) $S = \left\{ x \in \mathbb{R} \mid \frac{3}{2} \leqslant x \leqslant 2 \right\}$

563. a)
$$S = \left\{ x \in \mathbb{R} \mid x \geqslant \frac{3}{2} \right\}$$

b) $S = \left\{ x \in \mathbb{R} \mid -\frac{2}{3} < x \leqslant 5 \right\}$

c)
$$S = \left\{ x \in \mathbb{R} \mid 3 \le x \le \frac{13 + \sqrt{201}}{4} \right\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid -2 \leqslant x \leqslant \frac{3}{2} \text{ ou} \right\}$$

$$3 \leqslant x \leqslant 4$$
e) S = $\{x \in \mathbb{R} \mid x < 2 - \sqrt{3} \text{ ou } \}$

$$x \geqslant 3 + \sqrt{2}j$$

f)
$$S = \{x \in \mathbb{R} \mid 2 \le x \le 3\}$$

g)
$$S = \emptyset$$

h) $S = \mathbb{R}$

564. a)
$$S = \left\{ x \in \mathbb{R} \mid \frac{-5 + \sqrt{13}}{2} < x \le 1 \right\}$$

b)
$$S = \left\{ x \in |R| \mid \frac{-3 - \sqrt{5}}{2} < x \leqslant 1 \right\}$$

c)
$$S = \{x \in \mathbb{R} \mid -1 \le x \le 1\}$$

d)
$$S = \{x \in \mathbb{R} \mid x > 1\}$$

566. a) $S = \{x \in \mathbb{R} \mid x > 11\}$

b)
$$S = \{x \in \mathbb{R} \mid x \ge 4\}$$

c)
$$S = \begin{cases} x \in |B| - 1 < x < 1 - 1 \end{cases}$$

c)
$$S = \left\{ x \in |R| - 1 \le x < 1 - \frac{\sqrt{31}}{8} \right\}$$

d)
$$S = \left\{ x \in \mathbb{R} \mid x \leqslant -2 \text{ ou} \right.$$

 $\left. -1 \leqslant x < \frac{-1 + \sqrt{13}}{6} \right\}$

567. S =
$$\left\{ x \in \mathbb{R} \mid \frac{5}{2} \leqslant x < 3 \right\}$$

568. S =
$$\left\{ x \in \mathbb{R} \mid \frac{-45}{4} < x < 1 \text{ ou } x \ge 9 \right\}$$

Testes de **Vestibulares**

Nocões de lógica

1 (11 E CO 04)		-	1	50		2	
1. (U.F.GO-84)	A	negação	de	X	1	-2	e.

a)
$$x \ge 2$$

b)
$$x \leq -2$$

b)
$$x \le -2$$
 c) $x < -2$

d)
$$x < 2$$

e)
$$x < 2$$

2. (FUVEST-80) Cada um dos cartões abaixo tem de um lado um número e do outro lado uma letra.

2

3

Alguém afirmou que todos os cartões que têm uma vogal numa face têm um número par na outra. Para verificar se tal afirmação é verdadeira:

- a) é necessário virar todos os cartões.
- b) é suficiente virar os dois primeiros cartões.
- c) é suficiente virar os dois últimos cartões.
- d) é suficiente virar os dois cartões do meio.
- e) é suficiente virar o primeiro e o último cartão.
- 3. (PUC-RS-82) Sejam p e q duas proposições. A negação de p \(\lambda \) q equivale a:

$$d) \sim p \wedge q$$

b) $\sim p \wedge \sim q$

e) p ^ ~ q

c) ~ p v q

4. (PUC-SP-85) A negação da proposição $x \in (A \cup B)$ é:

a)
$$x \notin (A \cap B)$$

d)
$$x \in A$$
 ou $x \notin B$

b)
$$x \notin A$$
 ou $x \in B$

e)
$$x \notin A e x \notin B$$

c)
$$x \notin A e x \in B$$

- 5. (VUNESP-85) A negação de "para todo real x existe um real y tal que y < x" é equivalente a:
 - a) existe um real x tal que $x \le y$ para todo real y.
 - b) não existe um real x tal que $x \le y$ para todo real y.
 - c) existe um real x tal que $y \le x$ para todo real y.
 - d) não existe um real x tal que $y \le x$ para todo real y.
 - e) para todos reais x, y, com x < y, existe um real z com x < z < y.
- 6. (U.F.BA-81) A proposição $\sim p \vee q \Rightarrow q \wedge r$ é verdadeira, se:
 - a) p e q são verdadeiras e r, falsa.
 - b) p e q são falsas e r, verdadeira.
 - c) p e r são falsas e q, verdadeira.
 - d) p, q e r são verdadeiras.
 - e) p, q e r são falsas.
- 7. (PUC-RS-80) A sentença $(\exists x | x a = b)$ é a negação de:
 - a) $\exists x | x a \neq b$

d) $\forall x, x - a = b$

b) $\exists x | x - a > b$

e) $\forall x, x - a \neq b$

- c) $\exists x | x a < b$
- 8. (U.F.RS-84) A negação da proposição "Para todo y, existe um x tal que y = sen(x)" é:
 - a) Para todo y, existe um x tal que y = sen(x).
 - b) Para todo y e para todo x, y = sen(x).
 - c) Existe um y e existe um x tal que y = sen(x).
 - d) Existe um y tal que, para todo x, y = sen(x).
 - e) Existe um y tal que, para todo $x, y \neq sen(x)$.
- 9. (U.F.RS-82) A negação da proposição ($\forall x \in \mathbb{R}$) ($\exists y \in \mathbb{R}$) |xy = 1| é:
 - a) $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) [xy = 1]$
- d) $(\forall x \in \mathbb{R}) (\forall y \in \mathbb{R}) |xy \neq 1|$
- b) $(\forall x \in \mathbb{R}) (\exists y \in \mathbb{R}) [xy \neq 1]$
- e) $(\exists x \in \mathbb{R}) (\exists y \in \mathbb{R}) [xy \neq 1]$
- c) $(\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) [xy \neq 1]$

Conjuntos

- (CESGRANRIO-82) Sejam M, N e P conjuntos. Se M ∪ N = [1, 2, 3, 5] e M ∪ P = [1, 3, 4], então M ∪ N ∪ P é:
 - a) Ø

d) [1, 2, 3, 5]

b) [1, 3]

e) [1, 2, 3, 4, 5]

- c) [1, 3, 4]
- 11. (U.MACK.-80) Dados os conjuntos A, B e C, não vazios, sabe-se que $A \subset B$; então sempre se tem:
 - a) $A \cap C = \emptyset$

d) $A \cap B \subset C$

b) $A \cap B = \emptyset$

e) $A \cap C \subset B$

- c) B \cap C = \emptyset
- 12. (PUC-MG-92) Sendo A e B dois conjuntos quaisquer, assinale a alternativa verdadeira:
 - a) $(A B) \subset B$

d) $A \cup B = B \Rightarrow A = \emptyset$

b) $(A - B) \subset A \cup B$

e) $A \cap B = \emptyset \Rightarrow A \cup B = \emptyset$

- c) A ≠ B ⇒ a ⊄ B
- $C) A + B \Rightarrow a \not\subseteq B$

13.	(VUNESP-84) Support $A \cup B = \{a, b, c, A \cap B = \{d, e\} A - B = \{a, b, c\} \}$ Então:									
	a) B = {f, g, h} b) B = {d, e, f, g, c) B = {a, b, c, d,			d) $B = [d, e]$ e) $B = \emptyset$						
14.	(U.F.RN-84) Se A, C é igual a:	B e C são conjuntos	tais que C - ($A \cup B$) = [6, 7] e C	$\cap (A \cup B) = \{4, 5\}, \text{ então}$					
	a) [4, 5] b) [6, 7] c) [4, 5, 6]			d) [5, 6, 7] e) [4, 5, 6, 7]						
15.	(U.F.VIÇOSA-90) Sejam A, B, C e D subconjuntos quaisquer do conjunto universo U, tais $(A \cap B) \cap (C - D) = \emptyset$. Como consequência, pode-se afirmar obrigatoriamente que:									
	a) $A \cap B = \emptyset$ e b) $C - D = \emptyset$ c) $(A - D) \cap (C)$			d) $B \cap C = \emptyset$ e) $A \cap B = \emptyset$						
16.	(FGV-81) Dados os conjuntos $A = [a, b, c, d], B = [b, c, d, e], C = [a, c, f],$ então $[(A - B) \cup (B - C) \cup (A \cap B)] \cap [(A \cap C) \cup (B \cap A \cap C)]$ é:									
	a) [a, b, c, d, e]		d) [a, b]						
	b) {a, b, c, d} c) {a, c}		e	(b, c, d)						
17.	(FATEC-89) Assina vazio, então:	le a alternativa verda	deira. Se A e I	3 são dois conjuntos, n	não vazios, e Ø é o conjunto					
	a) $\{x \mid x \in A \text{ e } x \in B\}$ b) $B \supset (A \cap B)$ c) $A \cap \emptyset = \{\emptyset\}$ d) $B - A = X \text{ imp}$ e) $A \subset A \cap B$									
18.	(CESGRANRIO-80 = $\{I\}$ e $B \cup A$ =		$U = \{1, 2, 3,\}$	$\{A\} \in A = \{I, 2\}. O co$	onjunto B tal que $B \cap A =$					
	a) Ø	b) [1]	c) [1, 2]	d) [1, 3, 4]	e) U					
19.	(PUC-RS-82) Dado $A \cup C = B \cup X$	s os conjuntos $A = e B \cap X = \emptyset$ é:	[a, b, c], B	= [a, d] e C = [a, b]	(0, d), o conjunto X tal que					
	a) [a]	b) [b]	c) [c]	d) {a, b}	e) [b, c]					
20.	(U.F.RS-84) O conj	J.F.RS-84) O conjunto A é subconjunto de B e $A \neq B$, $A \cup (B - A)$ é:								
	a) B	b) A	c) Ø	d) A - B	e) A ∩ B					
21.	(PUC-RS-80) Sejam	$A, B \subset U. \text{ Se } x \in$	$(A \cup B)$, es	ntão:						
	a) $x \in A \cap B$ b) $x \in A \cup B$ c) $x \in A \cap B$			d) $x \in A \cap CB$ e) $x \in CA \cap B$						

22. (FGV-81) Simplificando a expressão abaixo

$$(\overline{X \cap Y}) \cup (\overline{X} \cap Y)$$

teremos:

- a) universo
- b) vazio

- c) $X \cap Y$ d) $\overline{X} \cap Y$ e) $X \cap \overline{Y}$

23. (ITA-88) Sejam A, B e C subconjuntos do conjunto dos números reais. Então podemos afirmar que:

- a) $(A \cap B)^C = A^C \cap B^C$
- b) $(A \cup B)^C = A^C \cup B^C$
- c) Se A \subset B então A^C \subset B^C
- d) $(A \cap B) \cup C^C = (A^C \cup C)^C \cap (B^C \cup C)^C$
- e) A U (B U C)^C = (A U B^C) \cap (A U C^C)

Nota: A^C significa o complementar de A no conjunto dos reais.

24. (ITA-89) Sejam A, B e C subconjuntos de IR, não vazios, e $A - B = \{p \in \mathbb{R}; p \in A \in p \notin B \mid P \in A\}$ as igualdades:

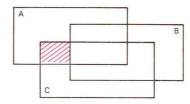
- 1. $(A B) \times C = (A \times C) (B \times C)$
- 2. $(A B) \times C = (A \times B) (B \times C)$
- 3. $(A \cap B) A \neq (B \cap A) B$
- 4. $A (B \cap C) = (A B) \cup (A C)$
- 5. $(A B) \cap (B C) = (A C) \cap (A B)$

podemos garantir que:

- a) 2 e 4 são verdadeiras.
- b) 1 e 5 são verdadeiras.
- c) 3 e 4 são verdadeiras.
- d) I e 4 são verdadeiras.
- e) I e 3 são verdadeiras.

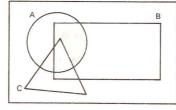
25. (U.F.RN-83) A parte hachurada do gráfico abaixo corresponde a:

- a) $(A \cap B) B$
- b) (A ∩ C) B
- c) $(B \cap C) A$
- d) (A ∩ C) A
- e) (A ∩ B) C

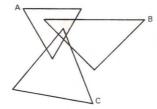


26. (F.SANTANA-83) Na figura abaixo, estão representados os conjuntos A, B e C não vazios. A região sombreada representa o conjunto:

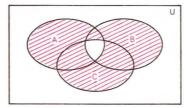
- a) $(A \cap B) C$
- b) (A U B U C) C
- c) (A B) C
- d) (B ∪ C) ∩ A
- e) $A \cap B \cap C$



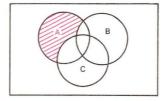
- 27. (U.E.BA-84) Na figura abaixo, estão representados os conjuntos não vazios A, B e C. A região sombreada representa o conjunto:
 - a) $A \cap B \cap C$
 - b) (A ∪ B) C
 - c) (A ∩ B) C
 - d) (B ∩ C) A
 - e) (A ∪ C) B

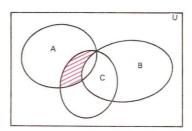


- 28. (U.F.PA-84) A parte hachurada da figura abaixo, onde U é o conjunto universo, e A, B, C são conjuntos, representa:
 - a) A U B U C
 - b) A ∩ B ∩ C
 - c) (A ∩ B) U (A ∩ C)
 - d) $(A \cup B) \cap (A \cup C)$
 - e) $(A \cup B \cup C) (A \cap B \cap C)$



- 29. (EAESP-FGV-80) Considere as afirmações a respeito da parte hachurada do diagrama abaixo:
 - $I A \cap (\overline{B} \cup \overline{C})$
 - $II A \cap (\overline{B} \cap \overline{C})$
 - III A \cap (B \cup C)
 - $IV A \cap (\overline{B \cap C})$
 - A(s) afirmação(ões) correta(s) é (são):
 - a) I
- d) II e III
- b) III
- e) II e IV
- c) I e IV
- (U.F.PE-84) Considere o seguinte "diagrama de Venn" que representa graficamente os conjuntos A, B e C, onde U representa o universo.





Assinale dentre as alternativas abaixo o conjunto que é representado pela área tracejada no diagrama, onde a barra (—) representa o complementar do conjunto em relação a $\it U.$

a) $A \cap B \cap C$

c) A U B U C

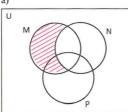
e) A U B U C

b) A O B O C

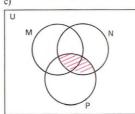
d) $A \cap \overline{B} \cap C$

31. (U.F.BA-81) A representação do complementar de $(M-N) \cap P$, em relação a P, está indicada pela região hachurada de:

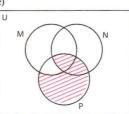
a) U



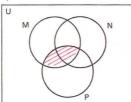
c)

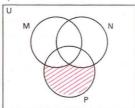


e)



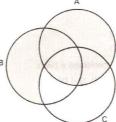
b)





32. (U.F.BA-91) Na figura ao lado, a parte sombreada representa as operações:

- a) [(A ∪ B ∪ C) C] ∪ (A ∩ C)
- b) (A U B) C
- c) A ∪ (B C)
- d) $(B-C) \cup (A-C) \cup (A \cap C)$
- e) (A C) ∪ B



33. (VUNESP-88) Se $A = \{x \in \mathbb{N} \mid x = 4n, \text{ com } n \in \mathbb{N}\}$

$$B = \{x \in \mathbb{N}^* \mid \frac{20}{x} = n, \text{ com } n \in \mathbb{N}\}$$

então o número de elementos de $A \cap B$ é:

- a) 3
- b) 2
- c) 1
- d) 0
- e) impossível de determinar

34. (U.F.MG-89) Os conjuntos A, B e A U B têm, respectivamente, 10, 9 e 15 elementos. O número de elementos de $A \cap B$ é:

- a) 2
- b) 3
- c) 4
- d) 6
- e) 8

35. (FATEC-88) Seja n um número natural. Se

 $A = \{x \in \mathbb{N} \mid x = 2n\} \in B = \{x \in \mathbb{N} \mid x = 2n + 1\}, \text{ então:}$

a) $B - A = \{1\}$

d) $A \cap B = A$

b) $A \cup B = IN$

e) $A \cap B = \{x \in \mathbb{N} \mid x \notin par\}$

c) A \cup B = [0, 10]

36.	$n \in \mathbb{Z}$]. então, A	∩ B é igual a: upar e múltiplo de 3} ur e múltiplo de 3} últiplo de 3} últiplo de 9}	$\{x \in \mathbb{Z} : x = 6n\}$	$+3, n \in \mathbb{Z}$ e $B =$	$= \{x \in \mathbb{Z} : x = 3n,$	
37.					$A (A \cup C) = 20,$ $U (B \cap C)$ é igual a:	
	a) 40	b) 50	c) 60	d) 70	e) 80	
38.	(U.F.RS-83) O núme cada um, é:	ero de elementos do co	onjunto $P(A) \cup P(B)$), com A e B disjuntos	s e com dois elementos	
	a) 2	b) 4	c) 5	d) 7	e) 8	
39.	(U.F.VIÇOSA-89) Umentos diferentes c		elementos distintos.	O número de subconj	untos de A, com 5 ele-	
	a) 52	b) 54	c) 58	d) 56	e) 60	
40.	portador desta mole	éstia apresenta apenas ernativa corresponder	s um subconjunto na	ão vazio de S.	oléstia. Em geral, um poderão apresentar os	
	a) 7	b) 8	c) 16	d) 15	e) 14	
41.	(U.F.PE-84) Consid	dere os seguintes conj	untos:			
	$A = \{1, 2, \{1, 2\}\}$	$B = \{[1], 2\}$ e	$C = \{1, \{1\}, \{2\}\}$			
	Assinale abaixo a a	lternativa falsa:				
	a) $A \cap B = \{2\}$ b) $B \cap C = \{\{1\}\}$ c) $B - C = A \cap B$ d) $B \subset A$ e) $A \cap \mathcal{P}(A) = \{\{1\}\}$	B $[1, 2]]$, onde $\mathscr{P}(A)$ é c	o conjunto dos subco	onjuntos de A		
42.	(CESESP-82) Consi	idere as afirmações al	baixo, onde $\mathcal{P}(X)$ é	o conjunto das parte	es de um conjunto X .	
	I - Existe $A \in \mathcal{P}(X)$ tal que $B \cap A = B$ qualquer que seja $B \in \mathcal{P}(X)$. II - Qualquer que seja $A \in \mathcal{P}(X)$, existe $B \in \mathcal{P}(X)$ tal que $A \cap B = \emptyset$. III - Quaisquer que sejam $A \in B \text{ em } \mathcal{P}(X)$, tem-se $A \cap B = \emptyset$. IV - Existe $A \in \mathcal{P}(X)$ tal que $B \cup A = B$, qualquer que seja $B \in \mathcal{P}(X)$. Assinale, então, a alternativa correta:					
	a) apenas I é verda	ideira.				
	b) apenas IV é verd					
	c) I, II e III são ve					
	 d) II e IV são falsa e) apenas III é fals 					
43.	(CESESP-82) Numa o jornal X e 60% o j	a Universidade são lic	que todo aluno é leito	r de pelo menos um de	ulunos da mesma lêem os dois jornais, assina-	

c) 40%

d) 60%

a) 80%

b) 14%

e) 48%

	60 pessoas compra 70 pessoas compra	am o produto B . am o produto C .	B. C.			
	Quantas pessoas fo	ram entrevistadas?				
	a) 670	b) 970	c) 870	d) 610	e) 510	
45.	(EAESP-FGV-80) No produto B; apena		r, calcular qua	ntas pessoas compran	n apenas o produto A ; aper	ıas
	a) 210; 210; 250		c	1) 120; 140; 170		
	b) 150; 150; 180 c) 100; 120; 150		6	e) n.d.a.		
46.	Física, 23 Química Sabendo-se que esta na Universidade?	e Física, 16 Biologia Universidade somer	a e Química e nte mantém as	8 estudam nas três f três faculdades, quan	tos alunos estão matriculad	
	a) 304	b) 162	c) 146	d) 154	e) n.d.a.	
47.					Humanas. Dentre esses can- porcentagem dos que optara	
	a) 50%	b) 20%	c) 10%	d) 6%	e) 5%	
48.					s e 40% são mulheres. Já to ndidatos que já têm empreg	
	a) 60%	b) 40%	c) 30%	d) 24%	e) 12%	
Co	njuntos nur	néricos				
49.	(PUC-CAMP-80) N podemos afirmar q		úmeros natura	nis, seja M(a) o conju	nto dos múltiplos de a. Ent	ão
	a) $(M(6) \cap M(3))$ b) $M(4) \cap M(8) =$ c) $(M(2) \cap M(4))$	M(4)		d) (M(3) ∩ M(4)) ∩ e) n.d.a.	M(6) = M(6)	
50.	(V.UNIF.RS-80) Da não nulos, então M	ados os conjuntos M_a é subconjunto de	$a = n \cdot a n$ M_b sempre qu	$\in \mathbb{N} \mid e M_b = \mid n \cdot b$ e:	$n \in \mathbb{N}$, com $a \in b$ natura	ais
	a) a for menor do	que b.		d) b for divisor de a.		
	b) b for menor do	que a.		e) a e b forem pares.		
	c) a for divisor de	b.				
51.					Se $A \notin o$ conjunto dos divis $A \cup B$) \notin um número:	io-
	a) quadrado perfei	to.	c) maior que	10.	e) cubo perfeito.	

d) menor que 6.

44. (EAESP-FGV-80) Numa pesquisa de mercado, foram entrevistadas várias pessoas acerca de suas preferên-

cias em relação a 3 produtos: A, B e C. Os resultados da pesquisa indicaram que:

b) múltiplo de 5.

e) 15

e) 37

e) 30

55.		n a, b, c números p comum e o mínimo	orimos distintos, e múltiplo comum o	em que $a > b$. de $m = a^2 b c^2 e n =$	= ab^2 são, respectivamente,
	21 e 1764. Pode-se afirmar qu	10 a + b + c e:			
	a) 9	b) 10	c) 12	d) 42	e) 62
56	(U.F.MG-92) Toda	as as afirmativas sol	ore números inteir	os estão corretas, ex	ceto:
	c) A soma de doisd) Todo inteiro ím	ero primo é ímpar. ur pode ser escrito n inteiros ímpares é upar pode ser escrito ro ímpar, então n ²	sempre um inteiro na forma 2n - 9	par.	
57	(PUC-CAMP-80)	A um aluno foram	propostas as ques	tões:	
	ela se torne e B — A soma de t	exata é: $(d - r)$ (se rês números natura	ndo d o divisor e is consecutivos é s	r o resto). sempre divisível por .	onar ao dividendo para que 3. idade, é sempre um quadra-
	O aluno respondeu	que as três questõe	es propostas são v	verdadeiras. Respond	a você:
		ı somente em relaçã ı somente em relaçã lmente.	D 2 0		
	d) O aluno acertou e) N.d.a.	ı somente em relaçã	io à segunda ques	tão.	
58.	(U.F.RN-84) Se A a) $\{x^2; x \in \mathbb{Z}^*\}$ b) $\{x^2; x \in \mathbb{N}\}$ c) $\{x^2; x \in \mathbb{N} \in \mathbb{N}$	< x < 7]	;], então A é equi	valente a:	
	e) (x; x é quadrade	*			
59.	(U.F.MG-92) O va	$lor de m = \frac{\sqrt{(-2)^2}}{\sqrt{(-2)^2}}$	$\frac{\overline{2} \cdot (0,331)}{2^{-1}}$ é	1	
	a) $-\frac{8}{3}$	b) $-\frac{4}{3}$	c) $-\frac{2}{3}$	d) $\frac{5}{2}$	e) $\frac{8}{3}$
					323

52. (CESGRANRIO-80) O mínimo múltiplo comum entre os números 2^m , 3 e 5 é 240. O expoente m é:

53. (U.F.MG-92) Considere-se o conjunto M de todos os números inteiros formados por exatamente três alga-

54. (FUVEST-91) No alto de uma torre de uma emissora de televisão duas luzes "piscam" com freqüências diferentes. A primeira "pisca" 15 vezes por minuto e a segunda "pisca" 10 vezes por minuto. Se num certo instante as luzes piscam simultaneamente, após quantos segundos elas voltarão a piscar simulta-

d) 5

d) 17

d) 15

c) 4

c) 13

c) 20

a) 2

a) 5

rismos iguais.

neamente?

a) 12

b) 3

Pode-se afirmar que todo $n \in M$ é múltiplo de:

b) 7

b) 10

60. (FUVEST-91) Os números inteiros positivos são dispostos em "quadrados" da seguinte maneira:

1	2	3	10	11	12	19	 	
4	5	6	13	14	15		 	
7	8	0	16	17	18			

O número 500 se encontra em um desses "quadrados". A "linha" e a "coluna" em que o número 500 se encontra são, respectivamente:

- a) 2 e 2
- b) 3 e 3
- c) 2 e 3
- d) 3 e 2
- e) 3 e 1

61. (PUC-SP-80) Um enxadrista quer decorar uma parede retangular, dividindo-a em quadrados, como se fosse um tabuleiro de xadrez. A parede mede 4,40 m por 2,75 m. Qual o menor número de quadrados que ele pode colocar na parede?

- a) 40
- b) 55
- c) 30
- d) 88
- e) 16

62. (PUC-SP-81) A dízima periódica 0,4999... é igual a:

- a) $\frac{49}{90}$
- b) $\frac{5}{11}$ c) $\frac{1}{2}$
- d) $\frac{49}{90}$

63. (PUC-SP-82) Sabe-se que o produto de dois números irracionais pode ser um número racional. Um exemplo é:

a) $\sqrt{12} \cdot \sqrt{3} = \sqrt{36}$

d) $\sqrt{2} \cdot 2 = \sqrt{8}$ e) $\sqrt{2} \cdot \sqrt{3} = \sqrt{6}$

b) $\sqrt{4} \cdot \sqrt{9} = 6$

c) $\sqrt{3} \cdot 1 = \sqrt{3}$

64. (FGV-83) Sejam a, b e c números reais quaisquer. Assinale a afirmação verdadeira:

a) $a > b \Leftrightarrow a^2 > b^2$

d) $\frac{c}{a+b} = \frac{c}{a} + \frac{c}{b}$

b) $a > b \Leftrightarrow ac > bc$

e) $a^2 = b^2 \iff a = b$

c) $\sqrt{a^2 + b^2} \ge a$

65. (U.E.BA-81) Se $A = \{x \in \mathbb{R} \mid -1 < x < 2\}$ e $B = \{x \in \mathbb{R} \mid 0 \le x < 3\}$, o conjunto $A \cap B$ é o intervalo:

- a) [0; 2]
- b) 0; 2
- c) [-1; 3] d)]-1; 3[
- e) |-1; 3|

66. (PUC-MG-92) A diferença A-B, sendo $A=\{x\in |\mathbb{R}\mid -4\leqslant x\leqslant 3\}$ e $B=\{x\in |\mathbb{R}\mid -2\leqslant x\leqslant 5\}$ é igual a:

a) $\{x \in |R| | -4 \le x < -2\}$

d) $[x \in \mathbb{R} \mid 3 \le x \le 5]$

b) $\{x \in \mathbb{R} \mid -4 \le x \le -2\}$

e) $\{x \in |R| | -2 \le x < 5\}$

c) $\{x \in \mathbb{R} \mid 3 < x < 5\}$

67. (FUVEST-91) Na figura estão representados geometricamente os números reais 0, x, y e 1. Qual a posição do número xy?

- a) À esquerda de 0.
- c) Entre x e v.
- e) À direita de 1.

b) Entre 0 e x.

d) Entre y e 1.

- 68. (FUVEST-92) Se -4 < x < -1 e 1 < y < 2, então xy e $\frac{2}{y}$ estão no intervalo:
 - a) |-8, -1|

d) $\left| -8, \frac{-1}{2} \right|$

b) $]-2, \frac{-1}{2}[$

e) $]-1, \frac{-1}{2}[$

- c) |-2, -1|
- 69. (U.F.PA-84) Sendo N, Z, Q, R, C os conjuntos numéricos usuais, assinale a afirmação verdadeira:
 - a) IN $\supset ZZ$
- b) $-\sqrt{2} \in \mathbb{Q}$
- c) $Z \in \mathbb{R}$
- d) 0 ∈ C
- e) Q \(\to Z\)
- 70. (EAESP-FGV-80) Assinalando V ou F se as sentenças abaixo são verdadeiras ou falsas

$$\mathbb{N} \supset \mathbb{Q}$$

 $\mathbb{Q} \cap \mathbb{R} = \mathbb{Q}$

 $IN \cup Z = IN$

 $Q \cap R \supset Q$

obtemos:

- a) FVFV
- b) VVVV
- c) FVVF
- d) FVVV
- e) VVVF

- 71. (COVEST-90) Assinale a afirmação verdadeira entre as seguintes:
 - a) No conjunto dos números inteiros relativos, existe um elemento que é menor do que todos os outros.
 - b) O número real $\sqrt{2}$ pode ser representado sob a forma $\frac{P}{q}$, onde p e q são inteiros, $q \neq 0$.
 - c) O número real representado por 0,37222... é um número racional.
 - d) Toda raiz de uma equação algébrica do 2º grau é um número real.
 - e) O quadrado de qualquer número real é um número racional.
- 72. (FUVEST-87) Qual o conjunto dos valores assumidos pela expressão:

$$\frac{a}{|a|} + \frac{b}{|b|} + \frac{c}{|c|} + \frac{abc}{|abc|}$$

quando a, b, c variam no conjunto de todos os números reais não nulos?

- a) [-4, -3, -2, -1, 0, 1, 2, 3, 4]
- b) [-4, -2, 0, 2, 4]
- c) [-4, 0, 4]
- d) [4]
- e) IR
- 73. (ITA-85) Sejam X um conjunto não vazio; $A \in B$ dois subconjuntos de X. Definimos $A^C = \{x \in X \text{ tal } \}$ que $x \notin A$ e $A - B = \{x \in A \text{ tal que } x \notin B\}$. Dadas as sentenças:
 - $1 A \cap B = \emptyset \Leftrightarrow A \subset B^C \Leftrightarrow B \subset A^C$, onde "\epsilon" significa "equivalente" e \@ o conjunto vazio;
 - 2 Se $X = \mathbb{R}$; $A = \{X \in \mathbb{R} \text{ tal que } x^3 1 = 0\}$; $B = \{x \in \mathbb{R} \text{ tal que } x^2 1 = 0\}$ e $C = \{x \in \mathbb{R} \text{ tal que } x^3 1 = 0\}$ que x - 1 = 0, então A = C = B; $3 - A - \emptyset = A$ e $A - B = A - (A \cap B)$;

 - $4 A B \neq A \cap B^C$:

podemos afirmar que está (estão) correta(s):

a) as sentenças nº 1 e nº 3.

- d) as sentenças nº 2, nº 3 e nº 4.
- b) as sentenças nº 1, nº 2 e nº 4.
- e) apenas a sentenca nº 2.

c) as sentencas nº 3 e nº 4.

- 74. (PUC-SP-80) Supondo que uma certa propriedade P é verdadeira para o número $n \in \mathbb{N}$, consegue-se provar que ela é verdadeira para o número 3n. Se P é verdadeira para n=2, então pode-se garantir que ela é verdadeira para n igual a:
 - a) 216
- b) 162
- c) 512
- d) 261
- e) 270

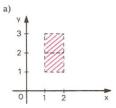
Relações

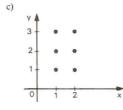
- 75. (U.E.LONDRINA-84) Em $\mathbb{R} \times \mathbb{R}$, sejam (2m + n; m 4) e (m + 1; 2n) dois pares ordenados iguais. Então m" é igual a:
 - a) -2
- b) 0
- c) $\frac{1}{2}$ d) 1
- 76. (U.F.MG-90) Sejam P = (a, b) e Q = (c, -2) dois pontos no plano cartesiano tais que ac < 0, b < 0e c > 0. Pode-se afirmar que:
 - a) P é um ponto do 1º quadrante.
- d) P é um ponto do 4º quadrante.
- b) P é um ponto do 2º quadrante.
- e) P pode estar no 1º ou 4º quadrante.
- c) P é um ponto do 3º quadrante.
- 77. (U.F.UBERLÂNDIA-82) Dados os conjuntos $A = \{0, -1, 1\}, B = \{1, 3, 4\} \in C = \{0, 1\},$ temos $(A - B) \times (C - B)$ igual a:
 - a) $\{(0, 0); (0, -1)\}$
- c) {(0, 0); (0, 1)}

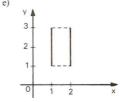
e) Ø (vazio)

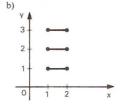
- b) $\{(-1, 0); (0, 0)\}$
- d) $\{(0, 1), (0, -1)\}$
- 78. (U.F.RN-83) Se n(A) = 3 e n(B) = 2, então $(n(A \times B))^{n(A \cap B)}$ é no máximo igual a:
- c) 12
- d) 18
- 79. (U.E.LONDRINA-83) Sejam os conjuntos A e B tais que $A \times B = \{(-1, 0), (2, 0), (-1, 2), (2, 2), (-1, 2), ($ (-1; 3), (2; 2). O número de elementos do conjunto $A \cap B$ é:
 - a) 0

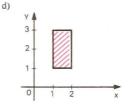
- 80. (U.F.PE-85) Assinale a única alternativa abaixo que representa o gráfico do conjunto $B \times A$ onde $A = [1, 2, 3] e B = [x \in \mathbb{R} : 1 \le x \le 2].$





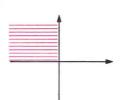






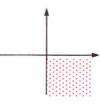
81. (U.F.BA-81) Sendo $F = \mathbb{R} \times \mathbb{Z}$ e $G = \mathbb{R}^*_- \times \mathbb{N}^*$, a representação gráfica de F - G é:

a)

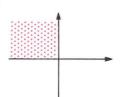


c)

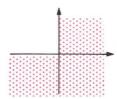
e)



b)



d)



82. (U.F.PA-84) Dados os conjuntos A = [a, b, c] e B = [a, b], qual dos conjuntos abaixo é uma relação de A em B?

- 83. (UNICAP-86) Dada a relação binária em \mathbb{N} (conjunto dos números naturais) $\mathbb{R} = [(x, y) \in \mathbb{N} \times \mathbb{N} \mid x + y = 10]$ assinale, entre as alternativas abaixo, a única correta.
 - a) R é reflexiva

d) R é transitiva

e)
$$\left(\frac{5}{3}, \frac{25}{3}\right) \in \mathbb{R}$$

- c) R é anti-simétrica
- 84. (U.E.CE-91) Se $P = \{1, 2, 5, 7, 8\}$, então o número de elementos do conjunto $W = \{(x, y) \in P^2; x < y\}$ é:
 - a) 8
- b) 9
- c) 10
- d) 11
- 85. (F.SANTANA-83) Seja a relação R, de A em A, definida por $(x; y) \in \mathbb{R} \Leftrightarrow$

$$\Rightarrow \begin{cases} y = \sqrt{x}, \text{ se } x \text{ \'e par} \\ y = x + 1, \text{ se } x \text{ \'e impar} \end{cases}$$
. Se $A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], \text{ o número de pontos do gráfico carte-}$

siano de IR é:

- a) 5
- b) 6
- c) 8
- d) 9
- e) 10
- 86. (PUC-RS-81) Seja |R a relação de $A = [x \in \mathbb{Z} \mid \neg 3 < x \le 5]$ em $B = [x \in \mathbb{Z} \mid \neg 2 \le x < 4]$, definida por $x^2 = (y 1)^2$ com $x \in A$ e $y \in B$. O conjunto imagem de R é:
 - a) $\{x \in \mathbb{Z} \mid -2 < x < 4\}$

d) $[x \in \mathbb{Z} \mid -3 < x < 5]$

b) $\{x \in \mathbb{Z} \mid -2 \le x < 4\}$

e) $|x \in \mathbb{Z} | -3 < x \le 5|$

c) $\{x \in \mathbb{Z} \mid -2 \le x \le 4\}$

- 87. (U.F.UBERLÂNDIA-82) Considerando a relação $R = \{(a, b) \in \mathbb{N} \times \mathbb{N}: a + 2b = 6\}$, então o domínio e a imagem de R^{-1} são, respectivamente:
 - a) IN e IN

d) [0, 2, 4, 6] e [0, 1, 2, 3]

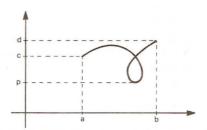
b) [0, 1, 2] e [2, 4, 6]

e) [0, 1, 2, 3] e [0, 1, 2, 3]

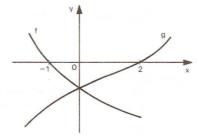
c) [0, 1, 2, 3] e [0, 2, 4, 6]

Funções

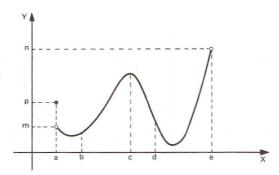
- 88. (U.F.PE-85) Dados os conjuntos $A = \{a, b, c, d\}$ e $B = \{1, 2, 3, 4, 5\}$, assinale a única alternativa que define uma função de A em B.
 - a) [(a, 1), (b, 3), (c, 2)]
 - b) [(a, 3), (b, 1), (c, 5), (a, 1)]
 - c) {(a, 1), (b, 1), (c, 1), (d, 1)}
 - d) {(a, 1), (a, 2), (a, 3), (a, 4), (a, 5)}
 - e) {(1, a), (2, b), (3, c), (4, d), (5, a)}
- 89. (U.F.PA-84) Sejam os conjuntos $A = \{1, 2 \mid e \mid B = \{0, 1, 2\}$. Qual das afirmativas abaixo é verdadeira?
 - a) $f: x \to 2x$ é uma função de A em B.
 - b) $f: x \to x + 1$ é uma função de A em B.
 - c) $f: x \to x^2 3x + 2$ é uma função de A em B.
 - d) $f: x \to x^2 x$ é uma função de B em A.
 - e) $f: x \to x 1$ é uma função de B em A.
- 90. (U.FORTALEZA-81) O gráfico ao lado:
 - a) representa uma função $f: |a; b| \rightarrow \mathbb{R}$.
 - b) não representa uma função de |a; b| em R porque existe y ∈ R que não é imagem de qualquer x ∈ |a; b|.
 - c) não representa uma função de [a; b] em \mathbb{R} porque existe elemento $x \in [a; b]$ com mais de uma imagem.
 - d) representa uma função $f: [a; b] \rightarrow [p; d]$.



- 91 (U.F.MG-82) Na figura estão esboçados os gráficos de duas funções f e g. O conjunto [x ∈ R; f(x) g(x) < 0] é dado por:</p>
 - a) x > 0 ou x < -1
 - b) -1 < x < 0
 - c) 0 < x < 2
 - d) -1 < x < 2
 - e) x < -1 ou x > 2

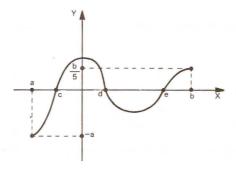


92. (U.F.MG-90) Observe o gráfico da função f.



Com base nesse gráfico, pode-se afirmar que:

- a) f assume o valor máximo em x = c.
- b) f assume o valor mínimo em $x \in [x \in \mathbb{R} : d \le x < e]$.
- c) o conjunto imagem de $f \in \{x \in \mathbb{R} : m < x \le n\}$.
- d) o domínio de $f \in [x \in \mathbb{R} : a < x \le e]$.
- e) f não está definida em a.
- 93. (U.C.SALVADOR-91) Sobre a função f, de |a, b| em |R, cujo gráfico se vê abaixo, é verdade que:



- a) $f(x) \leq 0$ para todo x no intervalo |d, e|.
- b) f é crescente no intervalo [0, b].
- c) f(e) > f(d).
- d) f tem apenas duas raízes reais.
- e) f(x) > 0 para todo x no intervalo |a, 0|.
- 94. (U.F.PA-84) Dada a função f de $A = \{0, 1, 2\}$ em $B = \{-2, -1, 0, 1, 2\}$ definida por f(x) = x 1, qual o conjunto imagem de f?
 - a) $\{-1, 0, 1\}$

d) $\{-2, -1, 0\}$

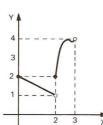
b) [-2, -1, 0, 1, 2]

e) $\{0, -1, 2\}$

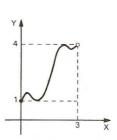
c) [0, 1, 2]

95. (U.F.MG-90) Dos gráficos, o único que representa uma função de imagem $\{y \in \mathbb{R} : I \leqslant y \leqslant 4\}$ e domínio $\{x \in \mathbb{R} : 0 \leqslant x < 3\}$ é:

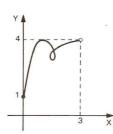
a)



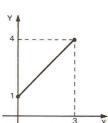
c)



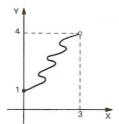
e)



b)

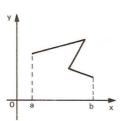


d)

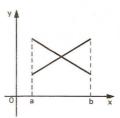


96. (U.F.MG-87) Das figuras abaixo a única que representa o gráfico de uma função real $y = f(x), x \in [a, b]$, é:

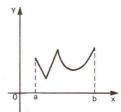
a)



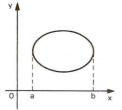
c)



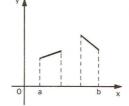
e)



b)



d)



e) 5

	a) 1	b) 3	c) 4	d) 5	e) 7	
100.	(FGV-88) A função	f é tal que:				
		é crescente para x < é decrescente para x				
	Então, podemos con	ncluir que:				
	a) c é ponto de má	ximo de f.				
	b) c é ponto de mír					
	c) $c \in \text{ponto de inf}$ d) $f(c) \ge c$.	lexao de f.				
	e) n.d.a.					
101.	(II F CF-80) Seia F	': IR → IR uma funçã	io satisfazendo as se	guintes propriedades		
	I - f(0) = 1	$f(y) \forall x, y \in \mathbb{R}$		S		
		spressão $f(0) + f(1)$	+ f(2) + + f(9)	é igual a:		
	a) $\frac{f(1)^{10} - f(1)}{f(1) - 1}$		1 c) f(1)		d) $\frac{f(1)^{10}-1}{f(1)-1}$	
102.	(CESGRANRIO-87)) Se $f(x) = \frac{x^4 + x^2}{x + I}$, então $f\left(-\frac{1}{2}\right)$ é:			
		b) $-\frac{5}{32}$	(- /		e) 5/8	
103.	(U.C.MG-81) O val	or da expressão y =	$\frac{0.25 - x^2}{0.5 + x}$ para $x =$	= −2,1 é:		
	a) $-1,6$	b) -1,2	c) 1,3	d) 2,6	e) 3,1	
104.	(U.C.SALVADOR-	91) O valor da expre	ssão $\frac{x^3 - 6x^2 + 9x}{x^2 - 9}$	$\frac{x+3}{x}$, para $x=$	= 99, é:	
	a) 100	b) 99	c) 98	d) 97	e) 96	
		ha-se que o número f cento de moradores, 1				tas
	$f(x) = \frac{300x}{150 - x} .$,		
	Se o número de func de moradores que a	cionários necessários p ls receberam é:	oara distribuir, em un	n dia, as contas de luz	foi 75, a porcentag	em
	a) 25	b) 30	c) 40	d) 45	e) 50	
					,	221

97. (U.F.RN-84) A imagem da função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \frac{1}{1+x^2}$, contém o elemento:

98. (V.UNIF.RS-80) Sejam $V = \{(P; Q) \mid P \in Q \text{ são vértices distintos de um hexágono regular}\} e fuma função que associa a cada par <math>(P; Q)$ e V a distância de P a Q. O número de elementos do conjunto imagem de f é:

99. (CESGRANRIO-85) Seja f(x) a função que associa, a cada número real x, o menor dos números (x + 1)

c) 5

a) -2

b) 0

e (-x + 5). Então, o valor máximo de f(x) é:

c) $\frac{1}{2}$ d) 2

- 106. (U.F.MG-92) Em uma experiência realizada com camundongos, foi observado que o tempo requerido para um camundongo percorrer um labirinto, na enésima tentativa, era dado pela função $f(n) = \left(3 + \frac{12}{n}\right)$ minutos. Com relação a essa experiência, pode-se afirmar que um camundongo:
 - a) consegue percorrer o labirinto em menos de três minutos.
 - b) gasta cinco minutos e 40 segundos para percorrer o labirinto na quinta tentativa.
 - c) gasta oito minutos para percorrer o labirinto na terceira tentativa.
 - d) percorre o labirinto em quatro minutos na décima tentativa.
 - e) percorre o labirinto, numa das tentativas, em três minutos e 30 segundos.
- 107. (FUVEST-92) A função que representa o valor a ser pago após um desconto de 3% sobre o valor x de uma mercadoria é:
 - a) f(x) = x 3

d) f(x) = -3x

b) f(x) = 0.97x

e) f(x) = 1.03x

- c) f(x) = 1.3x
- 108. (U.E.CE-91) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ funções definidas por:

$$f(x) = x + 2 e g(x) = x - 2$$
. Se $m = f\left(\cos\frac{\pi}{4}\right)$ e

 $n = g \left(sen \frac{\pi}{4} \right)$, então $m^2 - n^2$ é igual a:

- a) $2\sqrt{2}$
- b) $3\sqrt{2}$
- c) $4\sqrt{2}$
- d) $5\sqrt{2}$
- 109. (UNICAP-87) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função definida por $f(x) = a 3^{bx}$, onde $a \in b$ são constantes reais. Dado que f(0) = 900 e f(10) = 300, calcule K tal que f(k) = 100.
 - a) 40
- b) 25
- c) 15
- d) 30
- e) 20
- 110. (PUC-SP-80) A função de Euler Ø é definida para todo natural n > 1 da seguinte maneira: Ø(n) é o número de números naturais primos com n e menores que n. Quanto vale Ø(12)?
 - a) 4
- b) 5
- c) 3
- d) 6
- e) 0
- 111. (CESGRANRIO-91) Para ser aprovado, um aluno precisa ter média maior ou igual a 5. Se ele obteve notas 3 e 6 nas provas parciais (que têm peso 1 cada uma), quanto precisa tirar na prova final (que tem peso 2) para ser aprovado?
 - a) 4
- b) 4.5
- c) 5
-) 5.5
- e) 6

112. (PUC-CAMP-80) Considerando $N = \{0, 1, 2, 3, ...\}$ e, ainda,

$$A = \{x \in N \mid \frac{24}{x} = n, n \in N\}$$

$$B = \{x \in N \mid 3x + 4 < 2x + 9\},\$$

podemos afirmar que:

a) $A \cup B$ tem 8 elementos.

d) $A \cap B$ possui 4 elementos.

b) $A \cup B = A$.

e) n.d.a.

- c) $A \cap B = A$.
- 113. (FATEC-88) Se $y_1 = a + \frac{c}{a}x$, $y_2 = a \frac{c}{a}x$, a > 0, a < c e x < -a, então:
 - a) $y_1 > 0$ e $y_2 > 0$

d) $y_1 < 0$ e $y_2 < 0$

b) $y_1 < 0$ e $y_2 > 0$

e) $y_1 = y_2$

c) $y_1 > 0$ e $y_2 < 0$

114. (UNICAP-87) Se $D \subset R$ é o domínio da função $g(x) = \sqrt{\frac{l-x}{l+x}}$, então podemos afirmar que D é: igual a:

- a) [-1, 1]
- b) $|1, +\infty)$
- c) (-1, 1
- d) [-1, 1)

- 115. (U.F.CE-92) O domínio da função real $g(x) = \sqrt{\frac{x-2}{x-7}}$ é:
 - a) $|x \in \mathbb{R}; x > 7$
 - b) $\{x \in \mathbb{R}; x \leq 2\}$
 - c) $\{x \in \mathbb{R}; 2 \le x < 7\}$
 - d) $\{x \in \mathbb{R}; x \leq 2 \text{ ou } x > 7\}$

Funções do 1º grau

- **116.** (CESGRANRIO-91) Se $(2+3)^2 x = 12$, então x vale:
 - a) -2
- b) -1
- c) 1
- d) 9
- e) 13

- 117. (U.F.RN-83) Se $\frac{x}{2} 3 = \frac{1}{5} (2x + 2) 4$, então:
 - a) x + 9 = 0

d) 9x - 1 = 0

b) x - 9 = 0

- c) x 1 = 0
- 118. (U.E.CE-82) Se x_i é a solução da equação $\frac{x}{3} + \frac{x}{6} = 16 \frac{x}{4}$, então o valor de x_i está compreendido entre os números:
 - a) 17 e 19
- b). 19 e 21 c) 21 e 23 d) 23 e 25
- 119. (U.E.LONDRINA-83) Seja a solução da equação $\frac{3\cdot(x+2)}{5} \frac{3x+1}{4} = 2$, em |R. Então:
 - a) 2a = 14

b) $a^3 = -21$

e) a + 1 = 0

- c) $a = -\frac{11}{3}$
- 120. (U.F.MG-90) A raiz da equação

 $\frac{2(x+1)}{3} - \frac{3(x+2)}{4} = \frac{x+1}{6}$ pertence ao intervalo:

- a) [-6, -3] b) [-3, -1] c) [-2, 0] d) [0, 2] e) [2, 6]

- **121.** (U.F.MG-90) A raiz da equação $(y-1)(y+1)-(y-1)^2+2=9-7y$ pertence ao conjunto:
 - a) $\left\{\frac{7}{5}\right\}$

d) [-1, 9]

b) $\left\{ \frac{11}{5}, 0 \right\}$

e) [0, 3]

c) [1, 2]

- 122. (U.E.LONDRINA-84) Seja a função $f: \mathbb{R}$ tal que f(x) = ax + b. Se os pontos (0; -3) e (2; 0) pertencem ao gráfico de f, então a + b é igual a:

 a) $\frac{9}{2}$ b) 3
 c) $\frac{2}{3}$ d) $-\frac{3}{2}$ e) -1123. (FGV-88) O gráfico da função f(x) = mx + n passa pelos pontos (4, 2) e (-1, 6). Assim, o valor de m + n é:

 a) $-\frac{13}{5}$ b) $\frac{22}{5}$ c) $\frac{7}{5}$ d) $\frac{13}{5}$ e) 2,4
- 124. (PUC-SP-82) No conjunto dos números reais, a equação ax = b, na incógnita x:

 a) não pode ter infinitas soluções.

 d) tem infinitas soluções se $b \neq 0$.
 - a) não pode ter infinitas soluções. d) tem infinitas soluções se b = 0 e) tem solução única se $a \neq 0$.
- c) só tem solução se $a \neq 0$.
- **125.** (PUC-MG-92) Uma função do 1º grau é tal que f(-1) = 5 e f(3) = -3. Então f(0) é igual a: a) 0 b) 2 c) 3 d) 4 e) -1
- 126. (U.F.VIÇOSA-89) Uma função f é dada por f(x) = ax + b, onde a e b são números reais. Se f(-1) = 3 e f(1) = -1, então f(3) é o número:
- 127. (U.E.BA-84) A função f, de \mathbb{R} em \mathbb{R} , definida por $f(x) = (k^2 1) \cdot x + 3$, é crescente se, e somente se:
 - a) $k \neq 1 e k \neq -1$

b) 3

- b) k = 1 ou k = -1
- c) k > 0

a) 1

- d) -1 < k < 1
- e) k < -1 ou k > 1
- 128. (FUVEST-92) A tabela abaixo mostra a temperatura das águas do oceano Atlântico (ao nível do equador) em função da profundidade:

Profundidade	Superfície	100 m	500 m	1 000 m	3 000 m
Temperatura	27 °C	21 °C	7°C	4°C	2,8°C

Admitindo que a variação da temperatura seja aproximadamente linear entre cada duas das medições feitas para a profundidade, a temperatura prevista para a profundidade de 400 m é de:

- a) 16°C
- b) 14°C
- c) 12.5 °C
- d) 10.5 °C

d) 5

e) 8°C

e) -5

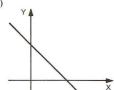
129. (FATEC-89) O gráfico da função, definida por:

$$\begin{vmatrix} 1 & -1 & x \\ 3 & 5 & -1 \\ 1 & 2 & y \end{vmatrix} = 0,$$

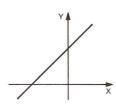
- a) intercepta o eixo x no ponto de abscissa $-\frac{3}{8}$.
- b) intercepta o eixo y no ponto de ordenada $-\frac{3}{2}$.
- c) determina, com os eixos coordenados, uma região triangular de área $\frac{9}{16}$
- d) passa pela origem do sistema cartesiano.
- e) não admite raiz real.

130. (U.F.MG-90) Sendo a < 0 e b > 0, a única representação gráfica correta para a função f(x) = ax + b é:

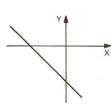
a)



c)



e)

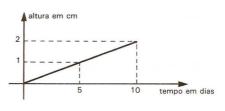


b)

d)

- 131. (PUC-SP-80) Para produzir um objeto, uma firma gasta Cz\$ 1,20 por unidade. Além disso, há uma despesa fixa de Cz\$ 4 000,00, independente da quantidade produzida. O preço de venda é de Cz\$ 2,00 por unidade. Qual é o número mínimo de unidades, a partir do qual a firma começa a ter lucro?
 - a) 1800
- b) 2 500
- c) 3 600
- d) 4 000
- e) 5 000

132. (VUNESP-85) Um botânico mede o crescimento de uma planta, em centímetros, todos os dias. Ligando os pontos colocados por ele num gráfico, resulta a figura ao lado. Se for mantida sempre esta relação entre tempo e altura, a planta terá, no 30º dia, uma altura igual a:



- a) 5 cm
- b) 6 cm
- c) 3 cm
- d) 15 cm
- e) 30 cm
- 133. (FGV-81) Duas funções importantes em finanças são: Receita Total: $RT = P \times Q$ e Custo Total: $CT = CF + CVU \times Q$, onde: P = preço de venda unitário; CF = custo fixo; CVU = custo variável unitário; Q = quantidade produzida e vendida.

A Metalúrgica Atlas S.A. produz uma peça, para a qual são conhecidos os seguintes dados (mensais): P = Cz\$ 5 000,00; CF = Cz\$ 100 000,00; CVU = Cz\$ 2 000,00; Lucro = L = RT - CT = Cz\$ 800 000,00. A Metalúrgica Atlas, a fim de enfrentar seus concorrentes, decide reduzir em 20% o preço de venda unitário (P), mas pretende obter o mesmo lucro, através do aumento em Q. Este aumento (em %) deverá ser de:

- a) 20%
- b) 150%
- c) 40%
- d) 50%
- e) 10%
- 134. (U.F.MG-92) Para alimentar seus pássaros, um criador compra, mensalmente, ração e milho num total de 1 000 kg. A ração custa Cr\$ 400,00 o quilograma e o milho, Cr\$ 250,00.
 Se x representa a quantidade, em quilogramas, de ração comprada, pode-se afirmar que a função-gasto, em cruzeiros, é dada por:
 - a) g(x) = 150x, 0 < x < 1000
- d) g(x) = 250x + 400000, 0 < x < 1000
- b) g(x) = 400x, 0 < x < 1000
- e) $g(x) = 400x 250\ 000, 0 < x < 1\ 000$
- c) g(x) = 150x + 250000, 0 < x < 1000

- 135. (U.F.GO-84) O menor múltiplo de 3 que satisfaz a inequação x + 5 < 2x 1 é:
 - a) 12

- e) 0
- 136. (U.F.SE-84) Quantos números inteiros, estritamente positivos, satisfazem a inequação

$$x + \frac{3}{2} < 3x - 4$$
?

- a) nenhum
- b) dois
- c) três
- d) quatro
- e) infinitos
- 137. (PUC-SP-84) O menor número inteiro k que satisfaz a inequação 8-3(2k-1)<0 é:
 - a) -2
- b) -1
- c) 0

- 138. (CESGRANRIO-84) Se a < -2, os valores de x tais que $\frac{a}{2}(x-a) < -(x+2)$ são aqueles que satisfazem:
 - a) x < a 2

b) x < -2a

- c) x > 2a
- 139. (FATEC-88) Os gráficos cartesianos das funções f e g, de R em R, interceptam-se num ponto do 1º quadrante. Se f(x) = x + 7 e g(x) = -2x + k, onde k é constante, então k satisfaz a condição:
 - a) k > 7

d) $-1 < k \le 0$

b) $1 < k \le 7$

e) -7 < k < -1

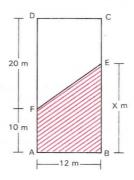
- c) $0 < k \le 1$
- 140. (CESGRANRIO-88) O número $\frac{3x+2}{5}$ é o seno de um ângulo. Pode-se afirmar que:
 - a) $-1 \leqslant x \leqslant 5$

d) $-\frac{7}{3} \le x \le 1$

b) $-1 \le x < \frac{7}{2}$

 $e) - \frac{3}{7} \leqslant x \leqslant \frac{7}{3}$

- c) $-1 \le x \le 2$
- 141. (U.F.MG-92) Observe a figura.



O retângulo ABCD representa um terreno e o trapézio hachurado, uma construção a ser feita nele. Por exigências legais, essa construção deve ter uma área, no mínimo, igual a 45% e, no máximo, igual a 60% do terreno.

Todos os valores possíveis de x pertencem ao intervalo:

a) [17, 26]

d) [17, 18]

b) [13,5, 18]

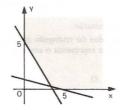
e) [18, 26]

c) [14, 18]

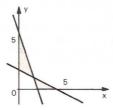
142. (U.F.R.PE-87) Suponha que x e y representam quantidades de dois bens, sendo, por isso, números não negativos. Nas alternativas abaixo aparecem sombreadas algumas regiões do plano xy. Indique qual delas representa o conjunto solução do sistema de inequação:

$$\begin{cases} x + 2y \geqslant 4 \\ 3x + y \geqslant 6 \end{cases}$$

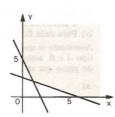
a)



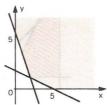
c)



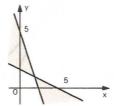
e)



b)



d)



143. (U.F.R.PE-91) Quantas soluções possui o sistema

$$\begin{cases} y < 3x \\ y < -3x + 6 \\ x > 0 \end{cases}$$

tais que x e y pertençam a \mathbb{Z} ?

- a) 0
- b) 1
- c) 2
- d) 3
- e) 6
- 144. (CESGRANRIO-85) Os valores positivos de x, para os quais (x-1)(x-2)(x+3) < 0, constituem o intervalo aberto:
 - a) (1, 3)
- b) (2, 3)
- c) (0, 3)
- d) (0, 1)
- e) (1, 2)
- 145. (U.E.LONDRINA-84) Quantos números inteiros satisfazem a inequação $\frac{4-x}{I+x} \ge 0$?
 - a) 2
- b) 3
- c) 4
- d) 5
- e) 6
- 146. (U.F.SE-84) O conjunto solução da inequação $\frac{x+3}{2x-5} \le 0$, em \mathbb{R} , é:
 - a) $\left[-3; \frac{5}{2}\right[$

b) $]-3; \frac{5}{2}[$

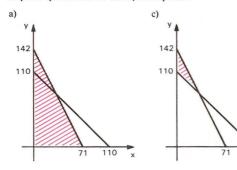
e) $\left] -\infty; -3 \right] \cup \left[\frac{5}{2}; +\infty \right]$

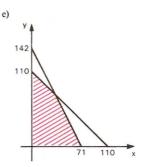
c) $\left[-3; \frac{5}{2} \right]$

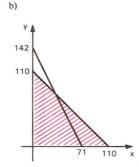
- 147. (CESESP-86) Um pecuarista deseja cercar com mourões e arame farpado um terreno de forma retangular. Dispõe para isso de 142 mourões, 888 grampos e arame em quantidade suficiente. A construção da cerca deve obedecer aos seguintes critérios:
 - i) Dois lados paralelos têm cercas do tipo A e os outros dois lados cerca do tipo B.
 - ii) A distância entre cada mourão das cercas do tipo A é de 1 m, enquanto nas cercas do tipo B essa distância é de 2 m.
 - iii) As cercas do tipo A têm 4 fios de arame e as cercas do tipo B têm 8 fios, sendo que 4 fios são comuns a ambos os tipos de cercas.
 - iv) Para cada fio de arame é batido um e só um grampo em cada mourão.

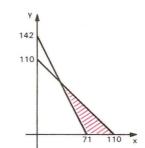
d)

Admitindo-se que x e y são respectivamente os comprimentos dos lados do retângulo que têm cercas do tipo A e B, assinale a única alternativa cuja parte tracejada da figura representa o conjunto dos pontos do plano que satisfaz as condições impostas.









- 148. (U.F.MG-90) O conjunto de todos os valores reais de x que satisfazem a desigualdade $\frac{-3}{x+I} \geqslant 0$ é:
 - a) vazio

d) $\{x \in \mathbb{R} : x \ge -1\}$

b) $\{x \in \mathbb{R} : x \leq -1\}$

e) $\{x \in \mathbb{R} : x > -1\}$

c) $\{x \in \mathbb{R} : x < -1\}$

- 149. (U.F.UBERLÂNDIA-81) O domínio da função real $f(x) = \sqrt{\frac{x+1}{-x+2}}$ é:
 - a) $\{x \in \mathbb{R} \mid -1 < x < 2\}$

d) $[x \in \mathbb{R} \mid x \leqslant -1 \land x > 2]$

b) $\{x \in |R| | -1 \le x < 2\}$

e) $\{x \in \mathbb{R} \mid x \le -1 \lor x > 2\}$

- c) $\{x \in \mathbb{R} \mid -1 \leq x \leq 2\}$

150. (EAESP-FGV-	-80) Resolver a ir	nequação: $\frac{1}{x-2} > 1$.			
a) $2 < x < 3$		d) x	≥ 3		
b) $2 \le x \le 3$		e) n	.d.a.		
c) $-3 \le x <$	-1/2				
151. (U.C.SALVAI	OOR-92) Qual é	o menor número inteiro qu	ue satisfaz a inequ	$ação \frac{1 + \frac{x-1}{2}}{\frac{x-1}{2} - 1} >$	1?
a) 0	b) 1	c) 2	d) 3	e) 4	
Função qua	adrática				
152. (PUC-MG-92)	Uma função do	2° grau é tal que $f(0) =$	5, f(1) = 3 e f(-1)	I) = 9. Então $f(2)$ é:	
a) 0	b) 2	c) 3	·d) -3	e) -5	
153. (FUVEST-89) Então $f\left(-\frac{2}{3}\right)$		$= x^2 + bx + c$, onde $b \in c$ s	ão constantes, pass	a pelos pontos (0, 0) e (1	, 2).
a) $-\frac{2}{9}$	b) $\frac{2}{9}$	c) $-\frac{1}{4}$	d) $\frac{1}{4}$	e) 4	
	30) Para que a para e b são, respec	rábola de equação $y = ax^2$ sivamente:	$^{2} + bx - 1$ contenh	a os pontos (-2; 1) e (3	; 1),
a) 3 e -3		d) –	<u>1</u> e −3		
b) $\frac{1}{3}$ e $-\frac{1}{3}$		e) 1	$e^{\frac{1}{3}}$		

3x + 4

c) $3 e - \frac{1}{2}$

c) 2

156. (U.E.CE-80) Dados três pontos no plano cartesiano, não colineares e com abscissas distintas duas a duas, o número de funções quadráticas que podem ser encontradas de maneira que esses pontos pertençam aos seus gráficos é:

a) 0

b) 1

c) 2

d) mais que duas

157. (V.UNIF.RS-80) Os números mínimo e máximo, respectivamente, de pares ordenados com pelo menos uma coordenada nula que o conjunto

$$A = ((x; y) e | R^2 | y = ax^2 + bx + c)$$

pode apresentar, fixados $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ e $c \in \mathbb{R}$, são:

a) 0 e 2

b) 0 e 3

c) 1 e 2

d) 1 e 3 e) 2 e 3

158. (U.F.RS-82) Se $x^2 + bx + c = 0$ e $2(x + 1)^2 = 0$ são equações equivalentes, então b + c é:

a) 1

b) 2

c) 3

d) 4

uma raiz nula, são:

satisfazem a condição: a) b = -c - 1

b) -2

a) -5

a) 2 e 5

b) bc = 1

c) b = c					
162. (VUNESP-85) Se $b \neq 0$, então a , b		inante da equação <i>ax</i>	$x^2 + 2bx + c = 0 \text{ \'e}$	igual a zero, com a ≠	≠ 0 e
a) formam uma	progressão geométri	ca. d) sã	o negativos.		
b) formam uma	progressão aritmétic		o diferentes.		
c) são positivos.					
163. (FUVEST-83) A	equação $x^2 - x + c$	= 0, para um conve	niente valor de c, a	idmite raízes iguais a:	
a) -1 e 1	b) zero e 2	c) -1 e zero	d) 1 e -3	e) -1 e 2	
164. (U.F.RS-84) A e	quação do 2º grau a	$ax^2 + ax + I = 0 \text{ ten}$	n uma raiz de mult	iplicidade 2. Essa raiz	é:
a) $-\frac{1}{2}$	b) $-\frac{1}{4}$	c) $\frac{1}{2}$	d) 2	e) 4	
165. (U.F.MG-82) Se	a equação $x^2 + px$	+ q = 0 admite raíze	es reais simétricas, o	então:	
a) $p = 1$ e q	= 0	d) p	= 0 e q > 0		
b) $p = 1 e q$	> 0	e) p	= 0 e q < 0		
c) $p = 1$ e q	< 0				
166. (U.F.MG-89) Co Pode-se afirmar o ção seja 4, é:	nsidere a equação d que o conjunto de too	o segundo grau, em o dos os valores de m, pa	x , $x^2 - (m-2)x + $ ara os quais a difere	m + 2 = 0. nça entre as raízes da e	equa-
a) [2]	b) [10]	c) [-2, 10]	d) {-2, 2}	e) [2, 10]	
167. (U.F.RS-83) As	raízes de $x^2 + 2ax +$	$-a^2-b^2=0, \text{ com } a$	$a \in \mathbb{R} \ e \ b \in \mathbb{R}, \ na$	unca são números:	
a) naturais.					
b) inteiros negat	ivos.				
c) racionais e na	io inteiros.				
d) irracionais.					
e) complexos e	não reais.				
168. (F.SANTANA-8: desses números é		s números cuja soma	é 18 e cujo produto	é −32. A soma dos inv	ersos
a) -9	b) $-\frac{16}{9}$	c) $-\frac{9}{16}$	d) 18	e) 9/16	
169. (PUC-RJ-82) A	diferença entre dois	números é 28 e seu p	oroduto é 333. Entâ	o sua soma é:	
a) 16	b) 26	c) 36	d) 46	e) 56	
340					

159. (U.F.MG-90) A soma de todas as raízes da equação $(x-1)^2 - (x-1)(x+4) = (x-1)(x+1)$ é:

160. (CESGRANRIO-85) Os valores do parâmetro p, para os quais a equação $x^2 + x + (p^2 - 7p) = 0$ tem

161. (CESGRANRIO-88) Se é igual a I (um) uma das raízes de $x^2 + bx + c = 0$, então os coeficientes b e c

d) 5

d) b + c = 1

e) b - c = 1

d) 0 e 7

e) 6

e) -7 e 3

c) 2

b) -5 e -2 c) 3 e 4

e) 8

	suo iguais a.						
	a) -2	b) 0	c) 3		d) -4	e) 1	
	(U.F.GO-80) O valo ao seu produto é:	or de k para que a so	ma das raíz	zes da equa	ação (k - 2)x	$x^2 - 3kx + 1 = 0 \text{ seja}$	a igual
	a) 1/2	b) 1/3	c) 2/3		d) $-3/2$	e) $-1/3$	
175.	(PUC-SP-85) Se as raízes de $x^2 + \beta x +$	raízes da equação x^2 12 = 0, então:	+ bx + 12	= 0 são,	cada uma, 7 i	unidades maiores do	que as
	a) $\beta = -5$			d) $\beta = 7$,		
	b) $\beta = 5$			e) faltam	dados para d	leterminar β	
	c) $\beta = -7$						
	(CESGRANRIO-80) das de <i>P</i> (<i>x</i>) é:	Seja $P(x) = x^2 + bx$	+ c. Um p	olinômio d	lo 2º grau cuja	as raízes são iguais ao	dobro
	a) $4x^2 + 2bx + 4c$			d) $x^2 - b$	ox + c		
	b) $x^2 + 2bx + 2c$			e) $x^2 + 2$	bx + 4c		
	c) 2P(x)						
77.	sua classe. Como no	91) Um professor dis o dia da distribuição f a cada aluno <i>I</i> doce a	altaram 12	alunos, el	e dividiu os 14	4 doces igualmente e	ntre os
	a) 36	b) 40	c) 42		d) 48	e) 50	
78.	(PUC-SP-80) A equ	$ação x + y = x \cdot y$	com duas i	ncógnitas	reais:		
	a) não admite solue	cão $com x > 0 e y >$	> 0.				
		com x < 0 e y < 0.					
	c) tem uma única s			,			
		duas soluções reais.					
	e) não admite solue						
	e) had admitte solut	ya0 em que x = 1.					
179.	terça-feira, com o de	91) Um especulador c ólar 10 cruzeiros mais dias, ele comprou 1	caro, o esp	eculador v	oltou a compr	ar dólares, gastando l	
	a) 1 100	b) 1 050	c) 1 000		d) 950	e) 900	
							341

170. (PUC-SP-85) Qual é a função do 2º grau cuja única raiz é -3 e cujo gráfico passa pelo ponto A = (-2; 5)?

171. (F.SANTANA-83) Sejam $\frac{5}{2}$ e $-\frac{3}{2}$, respectivamente, a soma e o produto das raízes da equação $2x^2 + bx + c = 0$. O valor de b + c é:

172. (PUC-MG-92) As raízes da função quadrática $y = 2x^2 + mx + 1$ são positivas e uma é o dobro da

173. (FUVEST-84) A equação $\frac{x}{1-x} + \frac{x-2}{x} - 1 = 0$ tem duas raízes. A soma e o produto dessas raízes

c) 1

a) $f(x) = 5x^2 + 30x + 45$ b) $f(x) = -\frac{5}{4}x^2 - \frac{5}{4}x + \frac{15}{2}$

 \dot{c}) $f(x) = -5x^2 - 20x - 15$

outra. A soma dessas raízes é:

b) -2

b) 2.1

a) -8

a) 2.4

d) $f(x) = x^2 + 10x + 21$

d) 2

c) 1,8 d) 1,5 e) 1,2

e) $f(x) = -x^2 + 9$

180. (U.F.PE-81) Sabendo-se que a soma dos qua mesmas é P, assinale a alternativa cuja equa	idrados das idades de Pedro e Paulo é S e que o produto das ação tem como raízes as respectivas idades.
a) $X^2 - SX + P = 0$	d) $X^2 - (\sqrt{S + 2P})X + P = 0$

e) $X^2 - PX + S = 0$ b) $X^2 - (\sqrt{S} + 2P)X + \sqrt{S} + 2P = 0$

c) $X^2 + SX - P = 0$

181. (U.F.MG-81) Uma das raízes da equação $ax^2 - ax + c = 0$, com $a \ne 0$, é $x_1 = 0$. A outra raiz é:

b) 1 c) 0 d) -1a) 2

182. (CESGRANRIO-84) Seja 7 a diferença entre as raízes da equação $4x^2 - 20x + c = 0$. Então, o valor da

c) -16 a) -24b) -20d) 4 e) 5

183. (CESGRANRIO-83) Se m e n são as raízes de $x^2 - 6x + 10 = 0$, então $\frac{1}{m} + \frac{1}{n}$ vale:

c) 1 d) $\frac{3}{5}$ e) $\frac{1}{6}$ a) 6 b) 2

184. (U.FORTALEZA-82) Se a soma dos quadrados das raízes da equação $x^2 + px + 10 = 0$ é igual a 29, o valor de p2 é múltiplo de:

c) 5

185. (U.C.MG-82) A equação $(x^2 + 2x)^2 - 2(x^2 + 2x) - 3 = 0$ tem uma raiz dupla igual a:

c) 0

186. (FGV-81) Equação de oferta (Eo) é uma função econômica que relaciona o preço de venda unitário (p) com a quantidade (x) oferecida pelo produtor. Equação de demanda (Ed) é uma função econômica que relaciona preço de venda unitário (p) com a quantidade (x) demandada pelo consumidor.

Seja Eo = 2x + p - 10 = 0Ed = $p^2 - 8x - 5 = 0$

Determinar o ponto de equilíbrio (PE) entre as 2 funções.

Nota: 1. O PE é dado por um par de valores (x, p) que satisfaz as duas equações.

2. Em Economia, só interessam valores $x \ge 0$, $p \ge 0$.

a) (-9,00; 0,50) d) (2,50; 5,00)

b) (2,90; 4,00) e) nda

c) (0; 0)

187. (U.F.RS-81) O maior número real, cuja soma com o próprio quadrado é igual ao próprio cubo, é:

b) $\frac{-1-\sqrt{3}}{2}$ c) $\frac{1-\sqrt{5}}{2}$ d) $\frac{1+\sqrt{5}}{2}$ e) $\frac{3+\sqrt{5}}{2}$ a) 0

188. (FGV-81) Uma empresa produz quantidades x e y de duas substâncias químicas, utilizando o mesmo processo de produção. A relação entre x e y é dada por:

$$(x-2)(y-3)=48$$

Essa equação é denominada curva de transformação de produto. As quantidades x e y que devem ser produzidas de modo a se ter x = 2y são tais que:

a) x < 20 e y > 10

b) x < 20 e y < 10

c) x < 10 e y < 10

d) x > 20 e y < 10

e) x < 10 e v < 5

189. (CESGRANRIO-81) Se o par (x, y) de números reais é solução de

$$\begin{cases} x^2 - y^2 = 5 \\ xy = 6 \end{cases}$$

podemos concluir que $(x - y)^2$ é:

c) $\sqrt{5}$

d) 5

e) 36

190. (U.F.MG-90) Para que o trinômio do segundo grau $y = ax^2 + bx + c$ tenha um mínimo no ponto (0, 4), os números reais a, b, c devem satisfazer as seguintes condições:

a) a < 0, b = 0, c = 4

d) a = 4, b < 0, c = 0

b) a > 0, b = 0, c = 4

e) a = 4, b > 0, c = 0

c) a = 1, b = 0, c > 4

191. (U.MACK.-80) Em $y = ax^2 + bx + c$, $(a \ne 0)$, com a, b e c reais, tem-se y máximo para x = 2. Então:

a)
$$\frac{b}{a} = -4 e a < 0$$

d) $\frac{b}{a} = 4 e c < 0$

b) b = -4 e a > 0

e) $b = 4a \text{ com } a \in c \text{ quaisquer}$

c)
$$\left| \frac{b}{a} \right| = 4 e \alpha$$
 qualquer

192. (U.F.PR-83) Se 2x + y = 3, o valor mínimo de $\sqrt{x^2 + y^2}$ é:

a) $\frac{1}{5}$ b) $\frac{2}{5}$ c) $\frac{\sqrt{45}}{7}$ d) $\frac{\sqrt{45}}{5}$

e) √3

193. (U.F.MG-92) Uma das raízes de f(x) = (x - a)(x - b) é igual a 4 e o gráfico de f passa pelo ponto (5, 12). Pode-se afirmar que o mínimo da função é:

a) $-\frac{121}{4}$ b) $\frac{3}{2}$

c) $\frac{121}{4}$

d) $-\frac{3}{9}$

194. (ITA-80) No sistema de coordenadas cartesianas ortogonais, a curva $y = ax^2 + bx + c$ passa pelos pontos (1, 1), (2, m) e (m, 2), onde m é um número real diferente de 2. Sobre esta curva podemos afirmar que:

- a) Ela admite um mínimo para todo m tal que 1/2 < m < 3/2.
- b) Ela admite um mínimo para todo m tal que 0 < m < 1.
- c) Ela admite um máximo para todo m tal que -1/2 < m < 1/2.
- d) Ela admite um máximo para todo m tal que 1/2 < m < 3/2.
- e) Ela admite um máximo para todo m tal que 0 < m < 1.

195. (PUC-MG-92) O ponto extremo V da função quadrática $f(x) = x^2 - 6x + 8$ é:

- a) um máximo, sendo V = (3, -1).
- b) um mínimo, sendo V = (-3, +1).
- c) um máximo, sendo V = (-3, +1).
- d) um mínimo, sendo V = (3, +1).
- e) um mínimo, sendo V = (3, -1).

196. (U.FORTALEZA-81) Considere a função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2 - 2x + 5$. Pode-se afirmar corretamente que:

- a) o vértice do gráfico de f é o ponto (1, 4).
- b) f possui dois zeros reais distintos.
- c) f atinge um máximo para x = 1.
- d) o gráfico de f é tangente ao eixo das abscissas.

- 197. (CESESP-86) Um fabricante vende, mensalmente, x unidades de um determinado artigo por $V(x) = x^2 - x$, sendo o custo de produção dado por $c(x) = 2x^2 - 7x + 8$. Assinale a alternativa correspondente ao número de artigos que devam ser vendidos mensalmente de modo que obtenha o lucro máximo.
 - a) quinze unidades

d) três unidades

b) cinco unidades

e) nenhuma unidade

- c) mil unidades
- 198. (U.F.GO-84) Seja A(x) a área do triângulo cujos vértices são os pontos (0, 0), (x, 0) e (x, x). Então para $0 < x \le 1$, podemos afirmar que:
 - a) y = A(x) é uma função crescente de x.
 - b) y = A(x) não define função.
 - c) o valor máximo de $v = A(x) \in I$.
 - d) y = A(x) é uma função linear.
 - e) o valor de A(x) para $x = \frac{1}{2} \notin \frac{1}{4}$.
- 199. (U.F.PE-85) Um fabricante pode produzir sapatos ao custo de Cz\$ 200,00 o par. Estima-se que, se cada par for vendido por x cruzados, o fabricante venderá por mês 800 - x ($0 \le x \le 800$) pares de sapatos. Assim o lucro mensal do fabricante é uma função do preço de venda. Assinale a alternativa que indica em cruzados o preço de venda, de modo que o lucro mensal seja máximo.
 - a) 200
- b) 500

- e) 400
- 200. (U.F.P.E-81) Considere a seguinte função quadrática $f(x) = x^2 5x + 6$. Assinale a alternativa correspondente ao conjunto de todos os pontos onde esta função é crescente.
 - a) $(-\infty; 2] \cup [3; +\infty)$

d) $(2,5; +\infty)$

b) [2; 3]

e) [2: 2.5]

- c) $(-\infty; 2,5)$
- 201. (VUNESP-84) Uma função quadrática tem o eixo dos y como eixo de simetria. A distância entre os zeros da função é de 4 unidades, e a função tem -5 como valor mínimo. Esta função quadrática é:

a)
$$y = 5x^2 - 4x - 5$$

d)
$$y = \frac{5}{4} x^2 - 5$$

b)
$$y = 5x^2 - 20$$

e)
$$y = \frac{5}{4} x^2 - 20$$

c)
$$y = \frac{5}{4}x^2 - 5x$$

- 202. (U.F.SE-84) O gráfico da função f, de \mathbb{R} em \mathbb{R} , definida por $f(x) = -2x^2 x$ é uma parábola cujo vértice é o ponto:
 - a) $\left(-\frac{1}{4}; -\frac{1}{2}\right)$

d) $\left(\frac{1}{4}; \frac{1}{8}\right)$

b) $\left(\frac{1}{4}; -\frac{1}{2}\right)$

e) $\left(-\frac{1}{4}; \frac{1}{8}\right)$

- c) $\left(-\frac{1}{4}; -\frac{1}{8}\right)$
- 203. (PUC-RS-80) A imagem da função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = x^2 1$, é o intervalo:
 - a) $[-1; +\infty)$

d) (-∞; -1)

b) $(-1; +\infty)$

e) (-∞: -1]

c) $[0; +\infty)$

204. (V.UNIF.RS-80) A imagem da função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = -x^2 + x - 2$ é:

a) $(-\infty; -2]$

d) [7/4; +∞)

b) $|2; +\infty)$

e) $(-\infty; -7/4]$

c) (-∞; 7/4)

205. (PUC-MG-92) O conjunto imagem da função $f: [-\sqrt{2}, 1] \rightarrow \mathbb{R}$ definida por $f(x) = 2x^2 + 1$ é:

a) $\{y \in \mathbb{R}; y \geqslant 1\}$

c) $\{y \in \mathbb{R}; 3 \le y \le 5\}$

b) $\{y \in \mathbb{R}; 1 \le y \le 3\}$

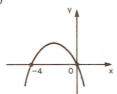
d) $\{y \in \mathbb{R}; 1 \leq y \leq 5\}$

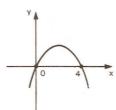
206. (U.F.PA-85) A parábola de equação $y = x^2 - 5x - 14$ é simétrica em relação à reta:

- a) y = x
- b) x = -2
- c) x = 7
- d) x = 5/2 e) y = -x

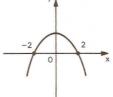
207. (U.C.SALVADOR-91) Considere a função f, de \mathbb{R} em \mathbb{R} , dada por $f(x) = 4x - x^2$. Representando-a graficamente no plano cartesiano, obteremos:

a)

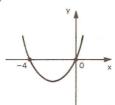




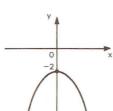
e)



b)



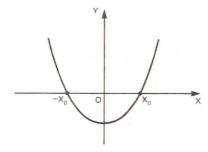
d)



208. (U.F.MG-90) O gráfico da função quadrática $y = ax^2 + bx + c$ é:

Pode-se afirmar que:

- a) a > 0, b = 0, c < 0
- b) a > 0, b = 0, c > 0
- c) a > 0, b > 0, c = 0
- d) a < 0, b = 0, c > 0
- e) a < 0, b < 0, c = 0



209. (U.MACK.-80) A equação que melhor se adapta à curva é dada por:

a)
$$(x-1)^2 = 8(y-2)$$

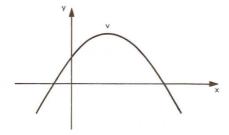
b)
$$(x-1)^2 = -8(y-2)$$

c)
$$(y-2)^2 = 8(x-1)$$

d)
$$(y-2)^2 = -8(x-1)^2$$

e) $x^2 = -8(y-2)$

e)
$$x^2 = -8(y - 2)$$



210. (U.F.PE-81) O gráfico abaixo representa a função real $f(x) = bx^2 + ax + c$.

Assinale a única alternativa correta.

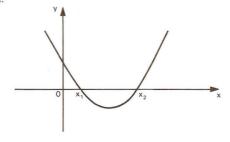
a)
$$b^2 - 4ac > 0$$
 e a > 0

b)
$$a^2 - 4bc > 0$$
 e b > 0

c)
$$a^2 - 4bc > 0$$
 e b > 0

d)
$$b^2 - 4ac > 0$$
 e a < 0

e)
$$a < 0$$
 e $c = 0$



211. (CESGRANRIO-80) O gráfico do trinômio do 2º grau $x^2 + bx + c$ é o da figura:

Podemos concluir que:

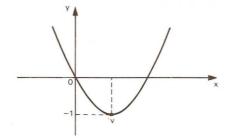
a)
$$b = -1$$
 e $c = 0$

b)
$$b = 0$$
 e $c = -1$

c)
$$b = 1$$
 e $c = 1$

d)
$$b = -2$$
 e $c = 0$

e)
$$b = 4$$
 e $c = 0$



212. (U.F.MG-92) O gráfico da função quadrática $y = ax^2 + bx + c$, $a \ne 0$, tem (5, 3) como ponto mais próximo do eixo das abscissas e passa pelo ponto (1, 4).

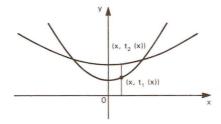
Todas as afirmativas sobre essa função estão corretas, exceto:

- a) A função não tem raízes reais.
- b) Obrigatoriamente se tem a > 0.
- c) O eixo da simetria do gráfico é a reta x = 5.
- d) O gráfico passa pelo ponto (9, 4).
- e) O gráfico corta o eixo dos y no ponto $\left(0, \frac{11}{3}\right)$

213. (U.F.PE-85) Considere os trinômios $t_1(x) = a_1x^2 + c_1$ e $t_2(x) = a_2x^2 + c_2$ com representações gráficas dadas por:

Assinale a alternativa correta:

- a) $a_1 > a_2$ e $c_1 < c_2$
- b) $a_1 < a_2$ e $c_1 < c_2$
- c) $a_1 < a_2 e c_1 > c_2$
- d) $a_1 > a_2$ e $c_1 > c_2$
- e) $a_1 > a_2$ e $c_1 < c_2$



214. (VUNESP-85) A equação cujo gráfico está inteiramente abaixo do eixo dos x é:

a)
$$y = 2x^2 - 4x - 5$$

d)
$$y = -x^2 + 5$$

b)
$$y = -x^2 + 4x$$

e)
$$y = -2x^2 + 4x - 4$$

c)
$$y = x^2 - 10$$

215. (U.F.PA-85) O gráfico da função quadrática $y = x^2 + px + q$ tem uma só intersecção com o eixo dos x. Então os valores de p e q obedecem à relação:

$$a) q = p^2/4$$

d)
$$a^2 = 4p$$

b)
$$q^2 = p/2$$

d)
$$q^2 = 4p$$

e) $q^2 = -4p$

c)
$$q = -p^2/4$$

216. (U.F.SE-84) O trinômio $y = x^2 + 2kx + 4k$ admitirá duas raízes reais e distintas se, e somente se:

d)
$$k < 0$$
 ou $k > 4$

b)
$$0 < k < 4$$

e)
$$k \neq 0$$
 e $k \neq 4$

- c) k > 0 e $k \neq 4$
- 217. (PUC-CAMP-80) Em relação ao trinômio $-x^2 + x 8$ podemos afirmar:
 - a) é positivo para todo real x.
 - b) tem 2 zeros reais distintos.
 - c) é negativo para todo real x.
 - d) muda de sinal quando x percorre o conjunto de todos os números reais.
 - e) n.d.a.
- **218.** (U.E.BA-84) O trinômio $v = -2x^2 + 3x 1$ é:
 - a) negativo, $\forall x \in \mathbb{R}$.
 - b) positivo se $x \neq 1$ e $x \neq \frac{1}{2}$.
 - c) negativo se -1 < x < 1.
 - d) positivo se $\frac{1}{2} < x < 1$.
 - e) negativo se $x > -\frac{1}{2}$.
- 219. (U.C.MG-81) A solução da inequação $x^2 \le x$ é o intervalo real:
 - a) $(-\infty; -1]$

d) [-1; 1]

b) $|-1; +\infty)$

e) [0; 1]

c) [-1; 0]

220. (U.E.LONDRINA	A-84) O conjunto dos	valores reais de x, q	ue tornam verdadeira a	sentença $2x^2 - x < 1$, é:
a) $\left\{ x \in \mathbb{R} \mid -\cdot \right\}$	$\frac{1}{2} < x < 1$	d) {	$x \in \mathbb{R} \mid \frac{1}{2} < x < 1$	
b) $\left\{ x \in \mathbb{R} \mid x \right\}$	$ > 1 \text{ ou } x < -\frac{1}{2} $	e) {	$\left\{x\in R\mid x<-\frac{1}{2}\right\}$	
c) $\left\{ x \in \mathbb{R} \mid x < 0 \right\}$	< 1			
221. (CESGRANRIO	-81) O menor inteiro	positivo N tal que	$3n \leqslant \frac{1}{2} N(N-1) \text{ \'e:}$	
a) 5	b) 6	c) 7	d) 8	e) 9
	a f uma função real es reais no qual f esta		a por $f(x) = \ell n(-x^2 +$	3x - 2). O conjunto de
a) $[x \in \mathbb{R} : x <$	< 1 ou x > 2	d) 1	R	
b) $\{x \in \mathbb{R} : 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0$	$\{x < 1\}$	e) {	$x \in \mathbb{R} : 2 < x < 3$	
c) $\{x \in \mathbb{R} : 1 < 0\}$	$\{x < 2\}$			
			$y(x) = 9x^2 - 6x + k$. Assi $y(x) \ge 0$ qualquer que se	nale a única alternativa eja x.
a) K ≥ 0	b) K ≤ -3	c) $K \geqslant 3$	d) K ≤ -1	e) K ≥ 1
	o L de uma empresa vo se, e somente se:	\acute{e} dado por $L=-2$	$x^2 + 8x - 7$, onde $x \in a$	quantidade vendida. O
a) $2 < x < 5$		d) (0 < x < 12	
b) $x > 7$ ou $x < 7$	< 1	e) 2	x > 12	
c) $1 < x < 7$				

225. (U.F.MG-87) O maior número a tal que $a \le x^2 - 4x + 12$ para qualquer valor real de x é:

a) -8

b) -6

c) 4

d) 6

. . .

226. (CESGRANRIO-91) A menor solução inteira de $x^2 - 2x - 35 < 0$ é:

a) -5

) -4

c) -3

d) -2

e) -

227. (UNESP-91) O conjunto solução da inequação $(x-2)^2 < 2x - 1$, considerando como universo o conjunto \mathbb{R} , está definido por:

a) 1 < x < 5

d) 1 < x < 4

b) 3 < x < 5

e) 2 < x < 5

c) 2 < x < 4

228. (CESGRANRIO-89) As soluções de $x^2 - 2x < 0$ são os valores de x pertencentes ao conjunto:

a) (0, 2)

d) $(-\infty, 0) \cup (2, +\infty)$

b) $(-\infty, 0)$

e) $(0, +\infty)$

c) (2, +∞)

-/ (-)

229. (CESGRANRIO-90) Se a equação $10x^2 + bx + 2 = 0$ não tem raízes reais, então o coeficiente b satisfaz a condição:

a) $-4\sqrt{5} < b < 4\sqrt{5}$

d) $0 < b < 8\sqrt{5}$

b) b < $4\sqrt{5}$

e) $-8\sqrt{5} < b < 0$

c) b > $4\sqrt{5}$

- 230. (CESGRANRIO-88) Se a equação $7x^2 + bx + 2 = 0$ não admite raízes reais, o coeficiente b satisfaz a condição:
 - a) b < $-14\sqrt{2}$

d) $-14\sqrt{2}$ < b < $14\sqrt{2}$

b) $|b| = 2\sqrt{14}$

e) b < $14\sqrt{2}$

- c) $-2\sqrt{14} < b < 2\sqrt{14}$
- 231. (U.F.MG-90) O conjunto de todos os valores inteiros de k, para os quais o trinômio do 2º grau em x, $y = \frac{1}{k}x^2 + (k+1)x + k$, não tenha raízes reais, é:
 - a) [-3, -2, -1, 1]

d) [-2, -1, 0]

b) [-2, -1, 0, 1, 2]

e) [-2, -1]

- c) [-2, -1, 0, 1]
- 232. (FATEC-87) Os valores de $k, k \in \mathbb{Z}$, para os quais a equação $kx^2 + 9 = kx 3$ não admite solução real, pertencem ao intervalo:
 - a) $|-\infty, -10|$

d) [0, 50]

b) |-10, -5|

e) |48. 100|

- c) |-2, 0|
- $+ a^3$, com a < 0, é:
 - a) Ø

d) $(-\infty; a) \cup (a; +\infty)$

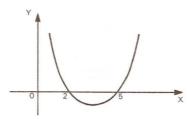
b) $(-\infty; -a) \cup (-a; +\infty)$

e) (-a: a)

- c) $(-\infty; -a) \cup (a; +\infty)$
- 234. (U.MACK.-81) Para todo x real $x^2 Kx + 4 > 0$ se, e somente se:
 - a) $|K| \leq 4$
- b) |K| < 4 c) |K| > 4 d) $|K| \ge 4$ e) |K| / 0
- 235. (F.C.M.STA.CASA-82) A função quadrática f, definida por $f(x) = (m-1)x^2 + 2mx + 3m$, assume valores estritamente positivos se, e somente se:
 - a) m < 0 ou m > $\frac{3}{2}$
- c) m > $\frac{3}{2}$

b) $0 < m < \frac{3}{2}$

- d) m < 1
- 236. (U.F.MG-92) Seja $f \in g$ funções reais de variável real tais que g(x) = x 1 e a função f, do segundo grau, o gráfico representado na figura.



- O conjunto solução da desigualdade $f(x) \cdot g(x) \ge 0$ é:
- a) $|x \in \mathbb{R} : x \le 2 \text{ ou } x \ge 5$

- d) Ø e) IR
- b) $|x \in \mathbb{R} : 1 \le x \le 2 \text{ ou } x \ge 5$
- c) $|x \in \mathbb{R} : 2 \le x \le 5 \text{ ou } x \ge 1$

- 237. (U.F.MG-89) O conjunto de todos os valores reais de x que satisfazem a desigualdade $(x^2 9)^5 (x 3)^7 < 0$ é:
 - a) $|x \in \mathbb{R} : x < -3|$

d) $|x \in \mathbb{R} : 3 < x < 9|$

b) $|x \in \mathbb{R} : -3 < x < 3|$

e) $|x \in \mathbb{R} : x > 9$

- c) $|x \in \mathbb{R} : x > 3|$
- 238. (U.F.PA-84) Sejam os conjuntos:

$$A = [x \in |R| | x^2 - 1 \le 0] e$$

 $B = [x \in Q | x^3 - 2x^2 + x = 0]$

Então, A ∩ B é:

a) [-1; 1]

d) |0; 1|

b) [0; -1]

e) |0; 1|

- c) [-1, 0, 1]
- 239. (EAESP-FGV-80) Determinar o domínio da função: $f(x) = \frac{\sqrt{x^2 5}}{\sqrt[3]{x^2 1}}$.
 - a) $(x \in \mathbb{R} \mid x \leq -\sqrt{5} \text{ ou } x \geq \sqrt{5})$
 - b) $(x \in \mathbb{R} \mid x \leq -1 \text{ ou } x \geq 1)$
 - c) $(x \in \mathbb{R} \mid -\sqrt{5} \leqslant x \leqslant \sqrt{5})$
 - d) $(x \in \mathbb{R} \mid x < -1 \text{ ou } x > 1)$
 - e) n.d.a.
- 240. (FGV-81) Dado o sistema de inequações:

$$\begin{cases}
-2x^2 + 3x + 2 \le 0 \\
x^2 + x - 2 \le 0
\end{cases}$$

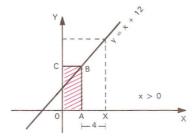
- o intervalo que satisfaz estas inequações tem amplitude:
- a) 3/2
- b) 1/2
- c) infinito
- d) 1
- e) n.d.a.
- **241.** (U.F.RS-84) As funções reais f e g são definidas em D por $f(x) = \sqrt{x^2 2x + 1}$ e g(x) = x 1. Se f = g, então D é subconjunto de:
 - a) |-1; 0|

d) (-∞; 0

b) [0; 1]

e) (1; +∞

- c) (-∞; -1)
- 242. (U.F.MG-92) Observe a figura.



- A área do retângulo hachurado está compreendida entre 28 e 108.
- O intervalo que contém todos os valores de x que satisfazem tal condição é:
- a) (2, 8)
- b) (3, 9)
- c) (4, 6)
- d) (5, 11)
- e) (7, 14)

243. (U.F.VIÇOSA-90) A função f, dada por $f(x) = 10x - x^2$, representa a área (não nula) de qualquer retân-
gulo de perímetro 20, sendo x a medida de um dos lados. Então o domínio de f é, necessariamente:

a)
$$5 \le x \le 10$$

d)
$$0 < x < 5$$

b)
$$0 < x < 10$$

e)
$$5 \le x < 10$$

c)
$$0 < x \le 5$$

244. (EAESP-FGV-80) A inequação $\frac{x(x+2)}{x^2-1} > 0$ tem como solução:

a)
$$x < -2$$
 ou $x > 1$

d)
$$x \leq -2$$
 ou $x \geq 1$

b)
$$x < -2$$
 ou $x \ge 1$

c)
$$x \le -2 \text{ ou } x > 1$$

245. (CESGRANRIO-90) As soluções de $\frac{x^2 - 2x}{x^2 + 1}$ < 0 são os valores de x que satisfazem:

a)
$$x < 0$$
 ou $x > 2$

d)
$$0 < x < 2$$

b)
$$x < 2$$

e)
$$x > 2$$

c)
$$x < 0$$

246. (U.F.MG-87) O conjunto dos valores de a, para os quais a designaldade $\frac{x^2 + ax + 1}{-x^2 + dx - 5} \le 0$ é verdadeira qualquer que seja o valor real de x, é:

a)
$$\{a \in \mathbb{R} : a \leq 0\}$$

b)
$$|a \in \mathbb{R} : a \leq -2 \text{ ou } a \geq 2|$$

e)
$$|a \in \mathbb{R} : a \leq 2$$

c)
$$|a \in \mathbb{R}; -2 \le a \le 2|$$

247. (U.C.SALVADOR-91) No universo \mathbb{R} , o conjunto solução da inequação $\frac{(x+1)(x-2)(x+2)}{x^2-4} > 0$ é:

a)
$$|x \in |R| |x > -1|$$

b)
$$|x \in \mathbb{R} | x > 2$$

c)
$$\{x \in |R| \mid x > -1 \ e \ x \neq 2\}$$

d)
$$|x \in \mathbb{R} | -1 < x < 2|$$

e)
$$\{x \in |R| | x < -2 \text{ ou } x > 2\}$$

248. (U.F.CE-91) Seja $g(x) = \frac{x^2 - x - 12}{2 - x}$

Se $|x \in \mathbb{R}$; $g(x) < 0| = (p, q) \cup (4, +\infty)$, então q - p é igual a:

- a) 5
- b) 6
- d) 8

249. (U.F.PA-85) O domínio da função
$$y = x \sqrt{\frac{4+x^2}{x^2-3x-4}}$$
 é o conjunto:

d)
$$]-\infty; -1] \cup]4; +\infty[\cup [0]$$

e) $]-\infty, -1[\cup]4; +\infty[$

b)
$$|-\infty; -2| \cup |-1; 2| \cup |4; +\infty|$$

250. (PUC-MG-92) Os valores de $x \in \mathbb{R}$ para que $\frac{x^2 - 3x}{\sqrt[4]{x^2 - d}} \le 0$ são:

a)
$$0 \le x \le 3$$

d)
$$-2 < x \le 0$$
 ou $2 < x \le 3$

b)
$$x \neq \pm 2$$

e)
$$x < -2$$
 ou $x > 2$

c)
$$2 < x \le 3$$

- 251. (PUC-SP-84) Sejam f e g funções reais de domínio real, onde:
 - f(x) > 0 somente para $x \ge 3$ ou para $x \le -2$,
 - g(x) > 0 somente para $1 \le x \le 5$,
 - $f(x) \neq 0$ e $g(x) \neq 0$ para todo x real.
 - Nestas condições $\frac{f(x)}{g(x)} < 0$ somente para:
 - a) x < -2 ou $3 < x \le 5$

d) $x \le -2$ ou $1 \le x < 3$ ou x > 5

b) $-2 < x \text{ ou } x \ge 5$

e) $-2 \le x < 3$ ou $x \ge 5$

- c) $x \ge 3$ ou x < 1 ou x = 2
- 252. (FATEC-88) O conjunto solução da inequação $\frac{x-1}{x^2-4x+3}\geqslant 1$, no universo $\mathbb R$, é:
 - a) $]-\infty$, 3] \cup [4, $+\infty$]

d) [3, 4]

b) $\mathbb{R} - \{3, 1\}$

e) [3, 4]

- c) [3, 4]
- 253. (U.F.MG-87) A solução da inequação $x + \frac{1}{x} \le 2$ é:
 - a) $\{x \in \mathbb{R} : x \leq -1 \text{ ou } x = 1\}$
- d) $\{x \in \mathbb{R} : x \leq 1\}$

- b) $\{x \in \mathbb{R} : x < 0 \text{ ou } x = 1\}$
- e) $\{x \in \mathbb{R} : x < 0\}$

- c) $\{x \in \mathbb{R} : x = 1\}$
- 254. (U.MACK.-80) Considere a função, de \mathbb{R} em \mathbb{R} , definida por $y = ax^2 + bx + c$, onde $b^2 4ac < 0$ e a < 0. Então:
 - a) y > 0 se x for interior ao intervalo das raízes.
 - b) y > 0 se x for exterior ao intervalo das raízes.
 - c) y < 0 para todo $x \in \mathbb{R}$.
 - d) y > 0 para todo $x \in \mathbb{R}$.
 - e) existe um único $x \in \mathbb{R}$ tal que y = 0.
- 255. (FATEC-88) Seja a equação do 2º grau $2mx^2 2x (3m + 2) = 0$, onde $x \in \mathbb{R}$ e $m \in \mathbb{R}^*$. Para que x' e x'' sejam raízes da equação e x' < 1 < x'', deve-se ter m pertencente ao conjunto:
 - a) $\left|-\infty, 0\right|$
 - b) $|-1, +\infty| [0]$
 - c) $|-\infty, -4| \cup |0, +\infty|$
 - d)]-3, 0[
 - e) $]-\infty$, 5[-[0]

Função modular

- 256. (U.F.MG-92)
 - Considere-se a função $f: \mathbb{R} \to \mathbb{R}$, definida por $f(x) = \begin{cases} x-3 \text{ se } x \leqslant -2\\ 2x^2+1 \text{ se } -2 < x < 3\\ 5 \text{ se } x \geqslant 3 \end{cases}$
 - Pode-se afirmar que o valor de $f(\pi) + 2f(\sqrt{5}) + f(-2)$ é:
 - a) 10
- b) 13
- c) 22
- d) 25
- e) $2\pi^2 + 1$

257.	(U.F.PA-84) Dada	a função $f: \mathbb{R} \to \mathbb{F}$	definida po	or			
	f(x) = -5 se x é racional $f(x) = 3$ se x é irracional,						
	quanto vale a expressão $f\left(-\sqrt{2}\right) - f\left(\frac{2}{3}\right)$?						
	a) -10	b) -8	c) 0		d) 6		e) 8
258.	88. (U.F.MG-92) Considere-se a função definida por						
	$f(x) = \begin{cases} x^2 \text{ se } x \text{ \'e racional} \\ 1 - x \text{ se } x \text{ \'e irracional} \end{cases}$						
	O valor de $f(2) + 2$	$2f(\sqrt{2}) - 4f\left[\frac{1}{2}\right]$ é:					
	a) $4 - 2\sqrt{2}$			d) $3\sqrt{2}$			
	b) $5 - 2\sqrt{2}$			e) 7			

- 259. (FUVEST-91) A moeda de um país é o "liberal", indicado por £. O imposto de renda I é uma função contínua da renda R, calculada da seguinte maneira:
 - I. Se $R \leq 24~000\,\text{£}$, o contribuinte está isento do imposto.
 - II. Se $R \ge 24\,000$ £, calcula-se 15% de R, e do valor obtido subtrai-se um valor fixo P, obtendo-se o imposto a pagar I.

Determine o valor fixo P.

a) 1 200£

d) 6 000£

b) 2 400£

c) $2\sqrt{2}$

e) 24 000£

c) 3 600£

260. (CESGRANRIO-88) Seja
$$f(x) = \begin{cases} x+1, \text{ se } 0 \leqslant x \leqslant 2\\ 5-x, \text{ se } 2 < x \leqslant 5 \end{cases}$$

A área da região limitada por x = 0, y = 0 e pelo gráfico da f(x) é:

a)
$$\frac{15}{2}$$

b) 8

c) $\frac{17}{2}$

e) $\frac{19}{2}$

261. (CESGRANRIO-84) Seja f a função definida no intervalo aberto (-1; +1) por

$$f(x) = \frac{x}{|I - |x|}$$
; então $f\left(-\frac{I}{2}\right)$ é:

a) $\frac{1}{2}$ b) $\frac{1}{4}$ c) $-\frac{1}{2}$ d) -1 e) -2

262. (U.MACK.-80) Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} |x| + 3, & \text{se } |x| \leq 2 \\ |x - 3|, & \text{se } |x| > 2 \end{cases}$$

o valor de f(f(f(...f(0)...)))

a) é 0.

d) pode ser 3.

b) pode ser 1.

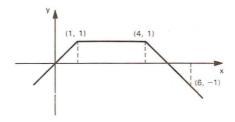
e) é impossível de ser calculado.

c) é 3.

- 263. (F.C.M.STA.CASA-80) As funções f(x) = |x| e $g(x) = x^2 2$ possuem dois pontos em comum. A soma das abscissas destes pontos é:
 - a) 0
- b) 3
- c) -1
- d) -3

e) 1

264. (U.F.PR-80) O gráfico abaixo:



corresponde à função real de variável real definida pela lei de correspondência:

a)
$$\begin{cases} f(x) = x + 2 \text{ para } x < 0 \\ f(x) = 2 \text{ para } 2 \le x < 4 \\ f(x) = x^2 - x \text{ para } x \ge 4 \end{cases}$$

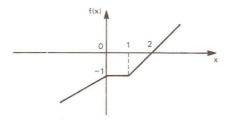
d)
$$\begin{cases} f(x) = x \text{ se } x \text{ \'e impar} \\ f(x) = I \text{ se } x \text{ \'e par} \end{cases}$$

b)
$$f(x) = \begin{cases} x \text{ se } x \text{ \'e par} \\ I \text{ se } x \text{ \'e impar} \end{cases}$$

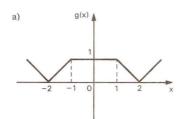
e)
$$\begin{cases} f(x) = 2 + x \text{ para } x = 2\\ f(x) = 0 \text{ para } x = 0\\ f(x) = -2 + x \text{ para } x = -2 \end{cases}$$

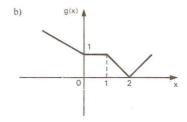
c)
$$\begin{cases} f(x) = x \text{ se } x \leqslant 1\\ f(x) = 1 \text{ se } 1 < x < 4\\ f(x) = 5 - x \text{ se } x \geqslant 4 \end{cases}$$

265. (U.F.VIÇOSA-89) A figura abaixo é o gráfico de uma função $f: \mathbb{R} \to \mathbb{R}$.

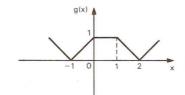


A alternativa correspondente ao gráfico da função g(x) = |f(x)| é:

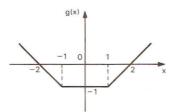




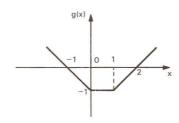
c)



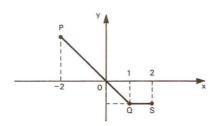
d)



e)



266. (CESGRANRIO-89)

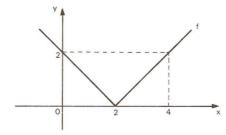


A função f é definida no intervalo (-2, +2) e seu gráfico é composto pelos segmentos de reta PQ e QS, como se mostra na figura. Se $f(\sqrt{2}) = -2$, então f(-2) vale:

- a) 1
- b) 2
- c) 3
- d) 4
- e) 5

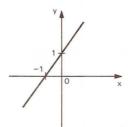
267. (U.C.SALVADOR-92) A figura abaixo pode representar o gráfico da função f, de IR em IR, definida por:

- a) f(x) = |x| + 2
- b) f(x) = |x 2|
- c) f(x) = |x + 2|
- d) f(x) = |x| 2
- e) f(x) = ||x| + 2|

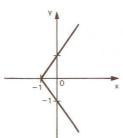


268 . (F.C.M.STA.CASA-81) O gráfico que melhor representa a relação $|y|=x+1, \ \forall x, \ y \in \mathbb{R},$ é:

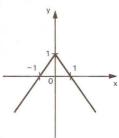
a)



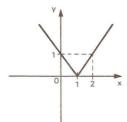
c)



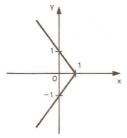
e



b)

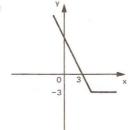


d)

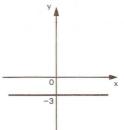


269. (U.MACK.-81) Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por $y \to |x-3| - x$. O gráfico que melhor a representa é:

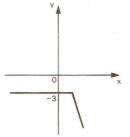
a)



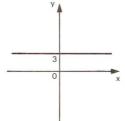
c)

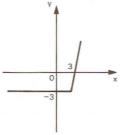


e)



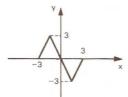
b)



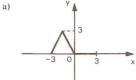


270. (U.MACK.-82) Seja y = f(x) uma função definida no intervalo [-3; 3] pelo gráfico ao lado. Considere a função $g: [-3; 3] \rightarrow \mathbb{R}$ definida por

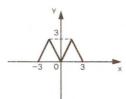
 $g(x) = \frac{|f(x)| - f(x)}{2}$. O gráfico que melhor a representa é:



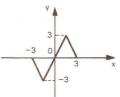
...



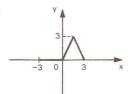
c)



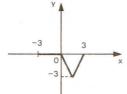
e)



b)

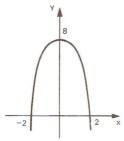


d)

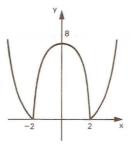


271. (U.F.MG-89) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função tal que $f(x) = |2x^2 - 8|$. O gráfico de y = f(x) é:

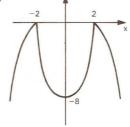
a)



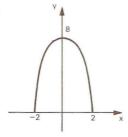
c)

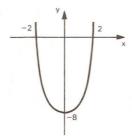


e)



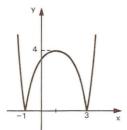
b)



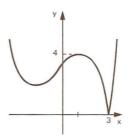


272. (COVEST-90) Qual dos gráficos abaixo melhor representa a função $f(x) = |x^2 - 2x - 3|$?

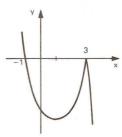
a)



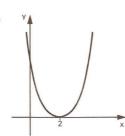
c)



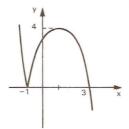
e)



b)

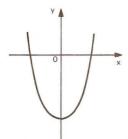


d)



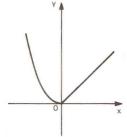
273. (CESGRANRIO-82) A melhor representação gráfica de $f:\mathbb{R}\to\mathbb{R}$, definida por $f(x)=|x^2-I|-(x^2-I)$, é:

a)

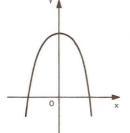


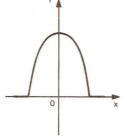
c)

e)



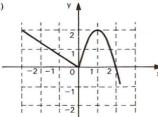
b)



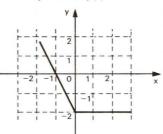


274. (F.C.M.STA.CASA-80) Seja dada a função $f(x) = \sqrt{(2x-2)^2 - 2x}$, definida para todo x pertencente ao conjunto dos reais. O gráfico representado abaixo que mais se aproxima de f(x) é:

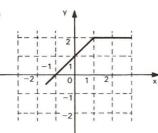
a)



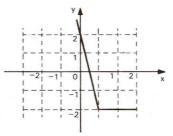
c)



b)



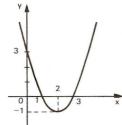
d)



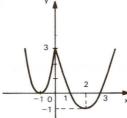
275. (FATEC-88) Seja f a função definida por $f: \mathbb{R} \to \mathbb{R}$ $x \to |x^2 - 4| \times |+3|$

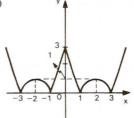
O gráfico de f está melhor representado em:

a)

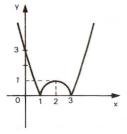


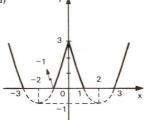
c)





b)





a) IR

b) IR

c) $\left[\frac{2}{3}; +\infty\right]$

e) a equação não tem solução.

a) a solução pertence ao intervalo fechado [1; 2].
b) a solução pertence ao intervalo fechado [-2; -1].
c) a solução pertence ao intervalo aberto (-1; 1).

278. (PUC-MG-92) A solução da equação |3x - 5| = 5x - 1 é:

a) $\{-2\}$ b) $\left\{\frac{3}{4}\right\}$	$c) \left\{ \frac{1}{5} \right\}$	d) [2]	e) $\left\{ \frac{3}{4}, -2 \right\}$
279. (U.C.MG-81) O produto d	las raízes da equação $ 2x +$	$3 = 1 - x \text{ \'e}:$	
a) $\frac{3}{4}$ b) $\frac{4}{3}$	c) $\frac{8}{3}$	d) $\frac{19}{2}$	e) 6
280. (CESGRANRIO-87) A son	na das soluções reais de x	+2 =2 x-2 é:	
a) $\frac{1}{3}$ b) $\frac{2}{3}$	c) 6	d) $\frac{19}{3}$	e) $\frac{20}{3}$
281. (PUC-MG-92) Os pontos de a) x < 0 b) x > 1 c) x < -1 282. (U.E.LONDRINA-84) Seja a) p < -4 b) -2 < p < 0	d e u <i>p</i> o produto das soluções re d	$\begin{array}{l} (1) -1 < x < 1 \\ (2) -1 < x < 2 \end{array}$	
c) 4 < p < 16 283. (U.F.VIÇOSA-89) Os valo a) impares. b) divisores de três.	d	quação $ x ^2 - 4 x + 4 =$) positivos.	= 0 são dois números:
c) primos. 284. (ITA-88) Sabendo-se que a $ x ^2 - x - 6 = 0$			
a) $a = 1 e b = 6$ b) $a = 0 e b = -6$ c) $a = 1 e b = -6$	d	a) a = 0 e b = -9 b) não existem a e b tais que tenha todas as raízes da	

276. (ITA-80) Considere a equação |x| = x - 6. Com respeito à solução real desta equação podemos afirmar que:

277. (F.C.M.STA.CASA-82) O conjunto solução da equação |3x-2|=3x-2, no universo R, é:

d) $\frac{2}{3}$; $+\infty$

e) $\left]-\infty; \frac{2}{3}\right]$

d) a solução pertence ao complementar da união dos intervalos anteriores.

- 285. (U.FORTALEZA-82) Assinale o item que contém a implicação verdadeira:
 - a) $x > y \Rightarrow |x| > |y|$

c) $x > y \Rightarrow x - y > y - x$

b) $x > y \Rightarrow x^2 > v^2$

- d) $x > y \Rightarrow a^x > a^y$, onde a > 0 e $a \ne 1$
- 286. (U.F.UBERLÂNDIA-82) O conjunto solução da inequação |3x 5| < 3 é:
 - a) $\{x \in \mathbb{R} : x < \frac{8}{3} \}$

d) $\left\{ x \in \mathbb{R} : x < \frac{2}{3} \text{ ou } x > \frac{8}{3} \right\}$

b) $\left\{ x \in \mathbb{R} : x > \frac{2}{3} \right\}$

e) Ø

- c) $\left\{ x \in \mathbb{R} : \frac{2}{3} < x < \frac{8}{3} \right\}$
- 287. (FGV-88) Quantos números inteiros não negativos satisfazem a inequação |x-2| < 5?
 - a) infinitos
- b) 4
- c) 5
- d) 6
- e) 7

288. (U.E.CE-81) Dados os conjuntos

$$A = \{x \in \mathbb{Z} \mid x - 5 \mid < 3\} e$$

$$B = \{x \in \mathbb{Z} \mid x - 4 \mid \ge 1\}$$

- A soma dos elementos de $A \cap B$ é igual a:
- a) 19
- b) 20
- c) 21
- d) 22
- 289. (U.E.CE-80) Adicionando-se os valores inteiros de x que satisfazem simultaneamente as desigualdades $|x-1| \le 2 e |2x-1| \ge 1$ obtemos:
 - a) 6
- b) 3
- c) 4
- d) 5
- 290. (U.E.CE-92) Sejam Z o conjunto dos números inteiros,

$$F=[x\in \mathbb{Z};\ 0< x+2<5], \quad G=[x\in \mathbb{Z};\ |x-2|<2]\ e\ H=[x\in \mathbb{Z};\ x^2\leqslant 1].$$
 O conjunto (F - G) \cup H é:

a) [-1, 0, 2]

c) [0, 1, 2]

b) [-1, 0, 1]

- d) [0, 1, 3]
- 291. (U.E.CE-91) Sejam Z o conjunto dos números inteiros.

M =
$$[x \in \mathbb{Z}; |2x - 3| = |x - 2|]$$
, P = $[x \in \mathbb{Z}; |x + 2| = |3x - 4|]$ e T = $[x \in \mathbb{Z}; |x - 3| \le 2]$. O conjunto (T − M) ∩ (T − P) é:

a) [1, 2, 4]

c) [3, 4, 5]

b) [2, 4, 5]

- d) [1, 2, 3]
- 292. (U.F.VIÇOSA-90) Quer-se que o número real x satisfaça simultaneamente as desigualdades 3 < x < 8e |2x - b| < 5, onde b é constante. Para isso, o valor de b deve ser um número:
 - a) par negativo.

d) múltiplo de três.

b) irracional.

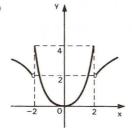
e) divisível por cinco.

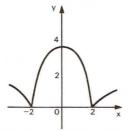
- c) impar positivo.

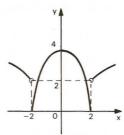
293. (U.MACK.-80) O gráfico da função f de IR em IR, dada por

 $f(x) \ = \left\{ \begin{array}{l} \sqrt{2-x} \ , \, \text{se} \, \, x < -2 \\ 4-x^2 \ , \, \text{se} \, \, |x| \leqslant 2 \, \, \acute{\text{e}} \, \, \text{melhor representado por:} \\ \sqrt{x-2} \ , \, \text{se} \, \, x > 2 \end{array} \right.$

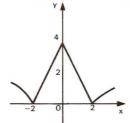
a)



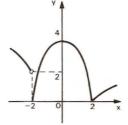




b)



d)



294. (UNICAP-87) Seja $S \subset R$ o conjunto solução da desigualdade $||x-1|-4|| \le 3$. Assinale, dentre as alternativas abaixo, aquela que representa o conjunto S.

e)
$$[-1, 2[\cup [3, 11]$$

295. (PUC-RS-81) Dentre as proposições

I -
$$(\forall x \in \mathbb{R})$$
 $(x^2 \ge x)$

$$\begin{array}{l} \text{I - } (\forall \ x \in \mathbb{R}) \ (x^2 \geqslant x) \\ \text{II - } (\exists \ x \in \mathbb{R}) \ (x^2 = x) \\ \text{III - } (\forall \ x \in \mathbb{R}) \ (|x| < 0) \end{array}$$

III -
$$(\forall x \in \mathbb{R}) (|x| < 0)$$

IV - $(\exists x \in \mathbb{R}) (x^2 = 0)$

as falsas são:

296. (ITA-91) Se $A = \{x \in \mathbb{R} : |x^2 + x + I| \le |x^2 + 2x - 3|\}$, então temos:

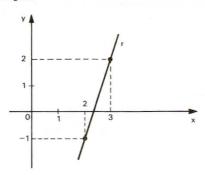
a) A =
$$\left[-2, \frac{1}{2}\right] \cup [4, +\infty[$$

d) A =
$$]-\infty$$
, $-3] \cup [1, +\infty[$

b)
$$A = \left[\frac{1}{2}, 4\right]$$

c)
$$A = [-3, 1]$$

297. (U.F.MG-92) Observe a figura.



A reta r é o gráfico de uma função g. Seja f a função dada por f(x) = |x - I|. Pode-se afirmar que $f(x) \le g(x)$ tem como conjunto solução:

- a) $\{x \in \mathbb{R} : x \leq 3\}$
- b) $\{x \in \mathbb{R} : x \ge 3\}$
- c) $\{x \in \mathbb{R} : x \le 2\}$
- d) Ø
- e) IR

Outras funções elementares

298. (CESGRANRIO-88) Resolvendo a inequação $(4x^2 + I) \cdot x^3 \cdot (5 - 3x) > 0$, obtemos:

a)
$$0 < x < 4$$

d)
$$x < 0$$
 ou $x > \frac{5}{3}$

b)
$$\frac{5}{3}$$
 < x < 4

d)
$$x < 0$$
 ou $x > \frac{5}{3}$
e) $x = 0$ ou $x > \frac{5}{3}$

c)
$$0 < x < \frac{5}{3}$$

299. (U.MACK.-82) A função que melhor se adapta ao gráfico é:

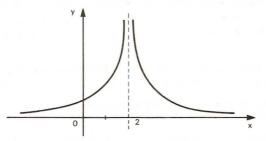
a)
$$f(x) = \frac{-1}{(x+2)}$$

b)
$$f(x) = \frac{1}{(x-2)}$$

c)
$$f(x) = \frac{1}{(x+2)}$$

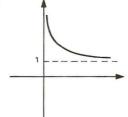
d)
$$f(x) = \frac{1}{(x+2)^2}$$

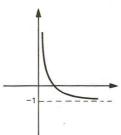
e)
$$f(x) = \frac{1}{(x-2)^2}$$

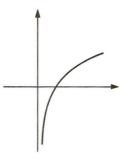


300. (EAESP-FGV-80) Assinale o gráfico correspondente à função $y = 1 - \frac{1}{x}$, x > 0:

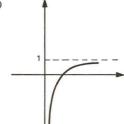
a)



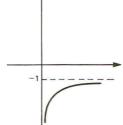




b)



d)



Função composta - Função inversa

- **301.** (PUC-MG-92) Se $f(x) = \frac{1}{x-1}$, o valor de x, de modo que f[f(x)] = 1, é;
 - a) 1,0
- b) 2,0
- c) 1,5
- d) -1,0 e) -1,5
- 302. (PUC-SP-80) Sejam as funções dadas por f(x) = 3x 2 e g(x) = 2x + 3. Se b = f(a), então g(b) vale:
 - a) 6a 1
- b) 5a + 1
- c) 3a 2 d) 6a 6 e) 5a 2
- 303. (U.F.VIÇOSA-90) A função $f: \mathbb{R} \to \mathbb{R}$ é dada por f(x) = ax + b, com a > 0. Se f(f(x)) = x, então:
 - a) a = 2 e b = 0

d) a = 2 e b = 2

b) a = 1 e b = 0

e) a = 1 e b = 2

- c) a = 2 e b = 1
- 304. (U.F.GO-84) Se f(x) = x 3, o conjunto de valores de x tais que $f(x^2) = f(x)$ é:
 - a) [0, 1]
- b) [-1, 0] c) [1]
- d) {-2, 3} e) [3, 4]
- 305. (U.E.CE-80) Sejam $f, g: \mathbb{R} \to \mathbb{R}$ funções definidas por $f(x) = x^2 1$ e g(x) = 2x + 1. Então a função composta $f \circ g$ assume o menor valor em um ponto do intervalo:

 - a) (-1; 0) b) (0; 1)
- c) $\left(\frac{1}{2}; 2\right)$ d) $\left(-1; -\frac{1}{2}\right)$

 $e) 2x^2$

309.	(U.F.PA-84) Dadas as funções $f \in g$ de \mathbb{R} em \mathbb{R} definidas por $f(x) = x^2 - x$ e $g(x) = x + 1$, qual das funções abaixo representa $(f \circ g)(x)$?						
	a) $x^2 + 1$			d) $x^2 + 2x$	c + 1		
	b) $x^2 - x + 1$			e) $x^{2} + x$			
	c) $x^2 - 1$						
310.	(U.F.MG-87) Se $g(x = x^2 + 5x + c \text{ são})$:	$(x) = x^2 + x e f(x) = 0$	ax + b, entã	io os valore	es positivos de a,	$b \in c$ tais que $g(f(x))$	c)) =
	a) $a = 1, b = 3, c$: = 12		d) $a = 2$,	b = 1, c = 6		
	b) $a = 1, b = 2, c$: = 6		e) $a = 2$,	b = 2, c = 6		
	c) $a = 1, b = 2, c$: = 4					
311.		g são funções definida	as por $f(x)$	$= \frac{1-x}{1+x} e$	$g(x) = \frac{1}{x}$, entã	io $(f \circ g)(x) = f($	g (x))
	é igual a:						
	a) g(x)	b) -f(x)	c) f(x)		d) $\frac{1}{f}$ (x)	e) $(g \circ f)(x)$	
312.		a f e g funções reais o to dos números reais		ser definid	a a composta g (-5, -2, 0, 1, 2)	(2)
313.	313. (EAESP-FGV-80) Seja $f(x) = ax^5 + bx^3 + cx^2 + d$ uma função definida para todo x real. Para que $f(x) = f(-x)$ qualquer que seja x real é necessário que:						a que
	a) $a = b$	b) $a = -b$	c) $a = b$	= 0	d) $b = c = 0$	e) a = c	
314.	(CESGRANRIO-83) $g[f(3)]$ é:) Sejam f e g funções	definidas e	m IR por f	(x) = 2x + 1 e g	(x) = x - 3. O val	or de
	a) -1	b) 1	c) 2		d) 3	e) 4	
315.	(U.F.PA-85) Dadas	as funções: $f(x) = \frac{1}{2}$	$\sqrt{x+3} e g($	$(x) = x^2 -$	l, o valor de g	○ <i>f</i> (0) é:	
	a) 0	b) 1	c) $\sqrt{2}$		d) $\sqrt{3}$	e) 2	
		-, -	-/ 1-		-,	-, -	
							365

306. (ITA-85) Considere as seguintes funções: $f(x) = x - \frac{7}{2}$ e $g(x) = x^2 - \frac{1}{4}$ definidas para todo x real. Então, a respeito da solução da inequação $|(g \circ f)(x)| > (g \circ f)(x)$, podemos afirmar que:

307. (F.C.M.STA.CASA-81) Seja f uma função linear, definida por f(x) = kx - 1. Se f é crescente e f(f(2)) = 0, o valor de 2^k é:

308. (U.F.SE-84) Se a função $f: \mathbb{R} \to \mathbb{R}$ é definida por f(x) = 2x, então f(f(x)) é igual a:

c) x

d) se x > 4, então x é solução.
e) se 3 < x < 4, então x é solução.

c) $\sqrt{2}$ d) $\frac{\sqrt{2}}{2}$ e) $\frac{1}{2}$

d) 2x

a) nenhum valor de x real é solução.

b) 2

b) 4x

b) se x < 3, então x é solução. c) se $x > \frac{7}{2}$, então x é solução.

a) $2\sqrt{2}$

a) $4x^2$

316. (U.E.CE-82) Sejam f e g funções de IR em IR definidas por:

$$f(x) = x^2 - 1$$
 e $g(x) = 3x + 1$

onde R é o conjunto dos números reais.

Então o valor de f(g(1)) + g(f(1)) é:

- a) 15
- b) 16
- c) 17
- d) 18

317. (U.F.MG-89) Seja f uma função tal que $f(x) = \frac{x}{4} (x-6)^2$.

Pode-se, então, afirmar que o valor de f(4+h)+f(4-h) para $h \in \mathbb{R}$ é dado por:

- a) 8
- c) $2(h-2)^2$ d) h^2+8
- e) $8(h + 1)^2$

318. (VUNESP-88) Dada a função $f(x) = x^2 - 8x + 15$, definida nos reais, a afirmação falsa a respeito dela é:

- a) A função se anula para x = 3 ou para x = 5.
- b) f(-1) = 24.
- c) O menor valor que f(x) atinge é -1.
- d) Para x > 4, quando x cresce, f(x) também cresce.
- e) Quando dobramos x, f(x) também fica dobrada.

319. (ITA-90) Sejam as funções f e g dadas por:

$$f: \mathbb{R} \to \mathbb{R}, f(x) = \begin{cases} 1 \text{ se } |x| < 1 \\ 0 \text{ se } |x| \geqslant 1 \end{cases}$$

g:
$$\mathbb{R} - \{1\} \to \mathbb{R}$$
, $g(x) = \frac{2x - 3}{x - 1}$

Sobre a composta $(f \circ g)(x) = f(g(x))$ podemos garantir que:

a) se x $\ge \frac{3}{2}$, f(g(x)) = 0

d) se $1 < x \le \frac{4}{3}$, f(g(x)) = 1

b) se 1 < x < $\frac{3}{2}$, f(g(x)) = 1

c) se $\frac{4}{2}$ < x < 2, f(g(x)) = 1

320. (CESGRANRIO-82) Sejam $A = \{1, 2, 3\}$ e $f: A \to A$ definida por f(1) = 3, f(2) = 1 e f(3) = 2. O conjunto solução de f[f(x)] = 3 é:

- a) [1]
- c) [3]
- d) vazio
- e) [1, 2, 3]

321. (U.F.MG-87) Seja $A = \{0, 1, 2, 3, 4\}$ e $f: A \to A$ uma função dada por f(x) = x + 1 se $x \ne 4$ e f(4) = 1. O número $x \in A$ tal que $(f \circ f \circ f \circ f)(x) = 2$ é:

- a) 0

- e) 4

322. (PUC-SP-83) Se f(x) = 3x - 4 e f(g(x)) = x + 4, então g(1) vale:

- a) -2
- b) 0

- e) 5

323. (ITA-92) Considere as funções: $f: \mathbb{R}^* \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$ e $h: \mathbb{R}^* \to \mathbb{R}$ definidas por:

$$f(x) = 3^{x} + \frac{1}{x}$$
, $g(x) = x^{2}$; $h(x) = \frac{81}{x}$

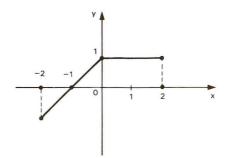
O conjunto dos valores de x em \mathbb{R}^* tais que $(f \circ g)(x) = (h \circ f)(x)$ é subconjunto de:

- a) [0, 3]
- b) [3, 7]
- c) [-6, 1]
- d) [-2, 2]
- e) n.d.a.

324. (CESGRANRIO-88) Seja f a função definida no intervalo fechado [-2, 2], cujo gráfico está indicado na figura. O valor de

f[f(2)] - f[f(-2)] é:

- a) -2
- b) -1
- c) 0
- d) 1
- e) 2

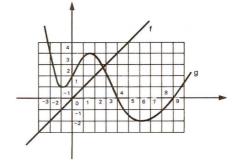


325. (VUNESP-90) Na figura estão representados os gráficos de uma função polinomial g, e da função f(x) = x. A partir da figura pode-se determinar que

$$(g(6))^2 - g(g(6))$$

vale, aproximadamente:

- a) -2
- b) 4
- c) 0
- d) -1
- e) 1



- 326. (U.F.MG-81) Sendo P(x) = ax + b, o valor da expressão P(x + 1) P(x) é:
 - a) a + 1
- b) ax
- c) a(x + 1)
- d) a + 1
- e) a
- 327. (UNICAP-87) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ definidas respectivamente por f(x) = ax + b, $a \in \mathbb{R}$, $b \in \mathbb{R}$, $a \neq 0$, e $g(x) = [f(x + l) f(x)] \cdot x$. Então podemos afirmar que:
 - a) $f(x) = g(x), \forall x \in \mathbb{R}$.
 - b) $f(g(x)) = g(f(x)), \forall x \in \mathbb{R}$.
 - c) Existe um único valor $x \in \mathbb{R}$ tal que f(x) = g(x).
 - d) Os gráficos de f e de g são retas paralelas.
 - e) O gráfico de f é uma reta enquanto o gráfico de g é uma parábola.
- 328. (FATEC-88) Seja a função f tal que f: (IR $-\{-2\}$) \rightarrow IR, onde $f(x) = \frac{x-2}{x+2}$. O número real x que satisfaz f(f(x)) = -1 é:
 - a) -4
- b) -2
- c) 2
- d) 4
- e) n.d.a.

a) f = g

a) linear.

Então, pode-se afirmar que:

b) g o f está definida em IR

c) (f \circ g)(x) = x + 2, \forall x \in IR

	b) constante.c) quadrática.		e) logar	ítmica.		
331.	(U.C.MG-81) Se P	(x-1) = 2x + 1, en	tão $P(x)$ é:			
	a) $2x - 3$	b) x - 3	c) x - 2	d) $2x - 1$	e) $2x + 3$	
332.	a) $x^2 - 2x$	fuma função tal que f	$f(x+2) = x^2 - 4$. Po	ode-se, então, afirmar 4x	que $f(x)$ é dada por:	
	b) $x^2 - 4x$ c) $x^2 + 4$		e) x + 2			
333.	(U.F.GO-84) Se f:	$\mathbb{Z} \to \mathbb{Z}$ é tal que $f(n)$	(n+1) = n-1, entage	ão o valor de $f(n-1)$	') é:	
	a) n + 1	b) n	c) n - 1	d) n - 2	e) n - 3	
334.	(U.E.BA-84) Seja f f corta o eixo dos	uma função decresce x no ponto de absciss	nte do 1º grau e tal a:	que f(3) = 5 e f(f(1)))) = 1. O gráfico de	
	a) -1	b) 2	c) 8	d) $\frac{2}{3}$	e) $\frac{1}{2}$	
335.	f(x+1) =	A) A função f satisfaz $x f(x), x > 0.$ A) valor de $f\left(\frac{3}{2}\right)$ é:	a relação			
	a) $\frac{\sqrt{\pi}}{2}$	b) $2\sqrt{\pi}$	c) $\frac{3\pi}{2}$	d) π^2	e) √π	
336.	(U.F.MG-82) Uma então o valor de f(tal que $f(5x) = 5f(x)$) para todo número re	eal x. Se $f(25) = 75$,	
	a) 3	b) 5	c) 15	d) 25	e) 45	
337.	(F.C.M.STA.CASA reais <i>a</i> e <i>b</i> , então <i>f</i> a) 3 · f(x) b) 3 + f(x) c) f(x ³)	(3x) 6 igual a:	o tal que $f(a+b) = f$ d) $[f(x)]$ e) $f(3) + f$		que sejam os números	
338.		$f(g(x)) = 2x^2 - 4x +$	-4 e f(x-2) = x +	- 2, então o valor de	g(2) é:	
	a) -2	b) 2	c) 0	d) 6	e) 14	
339.	(U.F.RN-83) Seja f	uma função real de	variável real. Se f(x	$+3) = x^2 + 2$, então	o $f(-1)$ é igual a:	
	a) 12	b) 18	c) 24	d) 30	e) 36	

329. (U.F.MG-90) Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} - \{0\} \to \mathbb{R}$ funções tais que f(x) = x + 1 e $g(x) = \frac{x^2 + x}{x}$.

330. (U.F.BA-81) A igualdade $f(x) = f(x + 1), \forall x, x \in \mathbb{R}$ é verificada pela função:

d) f(x) > 0 e g(x) > 0, $\forall x > -1$

e) f(x) < 0 e g(x) < 0, $\forall x < -1$

d) exponencial.

- 340. (PUC-MG-92) Dados $g(x) = 5x^2 + 3$ e $g \circ f(x) = 5x 7$, o domínio de f(x) é:
 - a) $|x \in \mathbb{R} \mid x \ge 2$

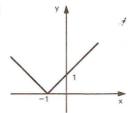
d) $[x \in \mathbb{R} \mid x \leq 2]$

b) $\left\{ x \in \mathbb{R} \mid 0 < x \leqslant \frac{3}{5} \right\}$

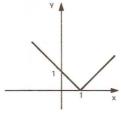
e) $[x \in |R| | x \leq -2]$

- c) $\left\{ x \in \mathbb{R} \mid x \geqslant \frac{7}{5} \right\}$
- 341. (PUC-MG-92) Duas funções f e g são tais que f(x) = x 1 e f|g(x)| = 2x + 2. Então g(1) é igual a:
 - a) 5
- b) 4
- c) 3
- d) 2
- e) 1
- 342. (U.C.SALVADOR-91) Sejam $f \in g$ funções de \mathbb{R} em \mathbb{R} tais que f(x) = 2x 3 e f(g(x)) = -4x + 1. Nestas condições, g(-1) é igual a:
 - a) -5
- b) -4
- c) 0
- d) 4
- e) :
- 343. (CESGRANRIO-87) Se $f(n+1) = \frac{2 f(n) + 1}{2}$, para $n=1, 2, 3, \dots$ e se f(1)=2, então f(101) é:
 - a) 49
- b) 50
- c) 51
- d) 52
- e) 5
- 344. (U.E.BA-84) Seja f a função de $\mathbb R$ em $\mathbb R$ definida por f(x) = 1 + x. O gráfico da função real g, definida por g(x) = |f(f(x))| é:

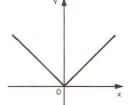
a)



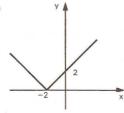
c)

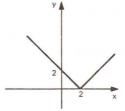


e

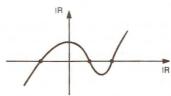


b)





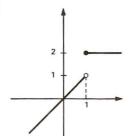
- 345. (PUC-RJ-81) Se a função f: R → R tem o gráfico abaixo e se I_{IR} é a função identidade de R, podemos afirmar que:
 - a) existe uma função g : R → R tal que g ○ f = I_{IR}
 - b) existe uma função $g:\mathbb{R}\to\mathbb{R}$ tal que $f\circ g=\mathrm{I}_{\mathbb{R}}$
 - c) existe uma função $g:\mathbb{R}\to\mathbb{R}$ tal que $f\circ g=\mathrm{I}_{\mathbb{R}}$ e $g\circ f=\mathrm{I}_{\mathbb{R}}$
 - d) a função f é tal que $f \circ f = I_{IR}$
 - e) a função f é tal que $f \circ f = f$.



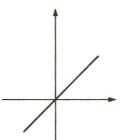
346. (U.F.BA-81) Sendo f(x) = 2 e g(x) = x, a representação gráfica de

$$h(x) = \begin{cases} f(g(x)) \text{ para } x \ge 1\\ g(f(x)) \text{ para } x < 1 \end{cases}$$
é

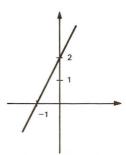
a)



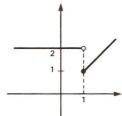
c)



e)



b)



d)

347. (ITA-83) Sejam três funções f, u, v: $\mathbb{R} \to \mathbb{R}$ tais que:

$$f\left\{x+\frac{1}{x}\right\} = f(x) + \frac{1}{f(x)} \text{ para todo } x \text{ não nulo e } (u(x))^2 + (v(x))^2 = 1 \text{ para todo } x \text{ real.}$$

Sabendo-se que x_0 é um número real tal que $u(x_0) \cdot v(x_0) \neq 0$ e

$$f\left|\frac{1}{u(x_0)}\cdot\frac{1}{v(x_0)}\right|=2$$
, o valor de $f\left|\frac{u(x_0)}{v(x_0)}\right|$ é:

d)
$$\frac{1}{2}$$

- 348. (U.F.VIÇOSA-89) Sejam os conjuntos A = [1, 2, 3] e B = [4, 5, 6, 7].
 O número máximo de funções injetoras que podem ser definidas de A em B é:
 - a) 20
- b) 24
- c) 21
- d) 22
- e) 23
- 349. (U.F.PE-84) Sejam f e g funções de \mathbb{Z} em \mathbb{Z} . Assinale, dentre as alternativas abaixo, aquela que é verdadeira:
 - a) Se f e g são injetivas, então f + g é injetiva.
 - b) Se f e g são sobrejetivas, então f + g é sobrejetiva.
 - c) Se f e g são injetivas, então f o g é injetiva.
 - d) Se f e g são injetivas, então o produto fg é injetiva.
 - e) Se f e g são sobrejetivas, então o produto fg é sobrejetiva.

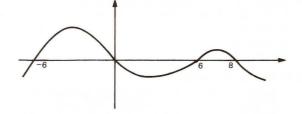
- 350. (F.C.M.STA.CASA-82) Seja f uma função de \mathbb{R} em \mathbb{R} , definida por $f(x) = \begin{cases} 0, \text{ se } x \text{ \'e par} \\ 1, \text{ se } x \text{ \'e impar} \end{cases}$ Nestas condições, pode-se afirmar que:
 - a) f é injetora e não sobrejetora.
 - b) f é sobrejetora e não injetora.
 - c) $f(-5) \cdot f(2) = 1$.
 - d) $f(f(x)) = 0, \forall x \in \mathbb{R}$.
 - e) o conjunto imagem de f é (0, 1).
- 351. (ITA-89) Sejam A e B subconjuntos de IR, não vazios, possuindo B mais de um elemento. Dada uma função $f: A \to B$, definimos $L: A \to A \times B$ por L(a) = (a, f(a)), para todo $a \in A$. Podemos afirmar que:
 - a) A função L sempre será injetora.
 - b) A função L sempre será sobrejetora.
 - c) Se f for sobrejetora, então L também o será.
 - d) Se f não for injetora, então L também não o será.
 - e) Se f for bijetora, então L será sobrejetora.
- 352. (U.MACK.-82) Uma função f é definida em A e tem imagem em B. Sabe-se que o conjunto A tem 2K-2 elementos e o conjunto B tem K+3 elementos. Se f é injetora, então:
 - a) $1 < K \le 5$

d) 8 < K < 10

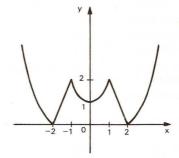
b) $5 < K \le 7$

c) $7 < K \le 8$

- e) K ≥ 10
- 353. (U.F.BA-81) Sendo f a função esbocada ao lado, tem-se:
 - a) f é par.
 - b) f é injetora.
 - c) f é crescente em |0; 6|.
 - d) $f\left(\frac{1}{\sqrt{3}}\right) < 0$.
 - e) f(0) > f(6).



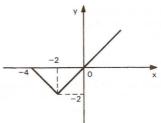
- 354. (U.FORTALEZA-82) Pelo gráfico da função f: R → R abaixo, podemos garantir que:
 - a) f é injetiva e seu conjunto de valores (conjunto imagem) é |0; 2|.
 - b) f é sobrejetiva e o número $\frac{3}{2}$ é imagem de exatamente quatro elementos distintos.
 - c) f não é injetiva e seu conjunto de valores é |0; ∞).
 - d) f não é sobrejetiva, mas o número $\frac{3}{2}$ é imagem de somente quatro reais distintos.



355. (U.MACK.-81) Seja y = f(x) uma função definida no intervalo $[-4; +\infty)$ pelo gráfico.

Considere a função $g: [-5; +\infty) \rightarrow \mathbb{R}$ definida por g(x) = 1 - f(x + 2). Podemos afirmar que:

- a) g(-3) < 0 e $f(-3) \cdot f(-2) > 0$.
- b) g(-5) > 0 e $f(\sqrt{5}) < 0$.
- c) g(0) = 1 e f não é função injetora.
- d) $f(\pi) = \pi$ e g não é função sobrejetora.
- e) nenhuma das anteriores está correta.



356. (U.F.PE-83) Sejam f e g funções de IN em IN definidas por:

$$f(n) \, = \, \left\{ \begin{array}{ll} \displaystyle \sum_{i=1}^{n=364} & e \\ & \end{array} \right. \quad g(n) \, = \, \frac{n(n+1)}{2} \,$$

Assinale então a alternativa falsa:

- a) a função f é igual à função g.
- d) f(n) + g(n) = n(n + 1).

b) f é injetiva.

e) g é sobrejetiva.

- c) $4f(n) g(n) = n^4 + 2n^3 + n^2$.
- 357. (ITA-80) Sejam $A \in B$ subconjuntos não vazios de $\mathbb{R} \in f: A \to B$, $g: B \to A$ duas funções tais que $f \circ g = I_B$, onde I_B é a função identidade em B. Então podemos afirmar que:
 - a) f é sobrejetora.

d) g é injetora e par.

b) f é injetora.

e) g é bijetora e ímpar.

- c) f é bijetora.
- 358. (ITA-85) Dadas as sentenças:
 - 1 Sejam $f: X \to Y$ e $g: Y \to X$ duas funções satisfazendo $(g \circ f)(x) = x$, para todo $x \in X$. Então f é injetiva, mas g não é necessariamente sobrejetiva.
 - 2 Seja $f: X \to Y$ uma função injetiva. Então, $f(A) \cap f(B) = f(A \cap B)$, onde $A \in B$ são dois subconjuntos de X.
 - 3 Seja $f: X \to Y$ uma função injetiva. Então, para cada subconjunto A de X, $f(A^C) \subset (f(A))^C$ onde $A^C = \{x \in X \mid x \notin A\} \ e \ (f(A))^C = \{x \in Y \mid x \notin f(A)\}\$

podemos afirmar que está (estão) correta(s):

a) as sentenças nº 1 e nº 2.

d) as sentenças nº 1 e nº 3.

b) as sentenças nº 2 e nº 3.

e) todas as sentenças.

- c) apenas a sentença nº 1.
- 359. (U.F.RS-82) Se $f: \mathbb{R} \to \mathbb{R}$ é uma função e $\{(x, 2) \mid x \in \mathbb{R}\} \cap \{(x, f(x)) \mid x \in \mathbb{R}\}$ contém mais de um elemento, então f não é:
 - a) sobrejetora.
- b) injetora.
- c) constante.
- d) periódica.
- e) quadrática.
- 360. (U.F.RS-84) As funções $f \in f^{-1}$ são inversas. Se $f \in definida$ por $f(x) = \frac{1}{x-3}$, então $f^{-1}(x) \in d$ igual a:

 - a) $\frac{1}{x+3}$ b) $\frac{1}{x}+3$ c) $\frac{1}{x}-3$ d) x-3 e) 3-x

363. (U.F.PR-82) Dada a inversa de g, é defini	função g definida po da por:	or $g(x) = x +$	4 para tod	lo valor real de x,	então a função g^{-l} ,
a) $g^{-1}(x) = x^{-1} - 4$		d)	$g^{-1}(x) =$	x - 4	
b) $g^{-1}(x) = x^{-1} + 4$		e)	$g^{-1}(x) =$	$[g(x)]^{-1}$	
c) $g^{-1}(x) = \frac{1}{x+4}$					
364. (U.F.PELOTAS-83)	Se f é uma função de	R em IR, defi	inida por f	(x) = 2x - 1, ent	$\tilde{a}o f^{-I}(-I)$ é igual a:
a) -3	b) -1	c) 0	d)	1	e) 3
365. (U.E.BA-84) Seja a fu	unção $f: \mathbb{R} - \frac{1}{3} \to E$	$B \subset \mathbb{R}$ definida	a por $f(x)$	$= \frac{x}{3x - 1} \cdot \operatorname{Se} f$	admite inversa, então
o conjunto <i>B</i> é:					
a) IR		d)	IR - {- = 1	$\left(\frac{1}{3}\right)$	
b) IR*		e)	IR - [3]	,	
c) $\mathbb{R} - \left\{ \frac{1}{3} \right\}$					
366. (U.E.CE-81) Sejam f no intervalo:	$f(x) = x^2 \text{ para } x > 0$	0 e g(x) a inve	ersa de f, er	ntão o valor de f	(g(4)) + g(f(4)) está
a) [0; 6)	b) [6; 12)	c) [12; 18)	d)	[18; 24)	
367. (U.F.RS-81) A função faz corresponder:	o inversa de f: (0; 1)	$\rightarrow \left(\frac{1}{2};I\right) \operatorname{def}$	inida por f	$(x) = \frac{1}{x+I}, a c$	ada x de seu domínio
a) x + 1	b) x - 1	c) $\frac{x+1}{x-1}$	d)	$\frac{1-x}{x}$	e) $\frac{1+x}{x}$
368. (U.F.MG-90) A function $x o (-\infty, 0]$ definidation a) $y o (-\infty, 0]$ definidation a) $y o (-\infty, 0]$ definidation a) $y o (-\infty, 0]$ b) $y o (-\infty, 0]$ c) $y o (-\infty, 0]$ c) $y o (-\infty, 0]$ d) $y o (-\infty, 0]$		[0, +]	+∞) tal que	$f(x) = x^2 \text{ \'e a fo}$	unção $g:[0,+\infty) \rightarrow$
369. (U.F.CE-92) Seja $f: P_1(0, 4)$ e $P_2(3, 0)$,				p. Se o gráfico de	f passa pelos pontos
a) (8, -3)	b) (8, -2)	c) (8, 2)	d)	(8, 3)	

361. (U.F.VIÇOSA-89) Considere a função f definida por f(x) = 10x + 3, $x \in \mathbb{R}$. Seja g a função inversa de

b) $-\frac{1}{3}$ c) $\frac{1}{3}$ d) 1

c) 3

362. (U.F.MG-90) O valor de a, para que a função inversa de f(x) = 3x + a seja $g(x) = \frac{x}{3} - 1$, é:

d) -2

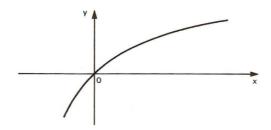
f. Então, g(-7) é:

b) 1

a) -1

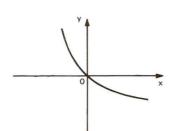
a) -3

370. (CESESP-85) Seja $f: \mathbb{R} \to \mathbb{R}$ a função dada pelo gráfico seguinte:

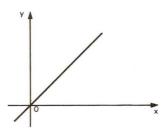


Assinale a alternativa que corresponde ao gráfico da função inversa de f:

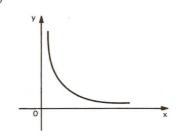
a)



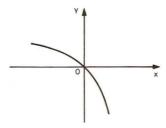
d)



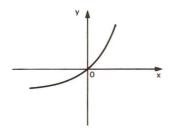
b)



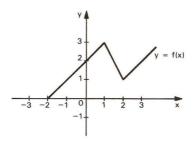
e)



c)

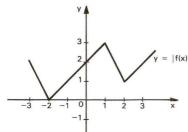


371. (CESESP-86) Considere a função representada no gráfico abaixo:

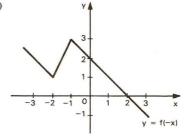


Assinale a alternativa falsa.

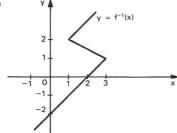
a)



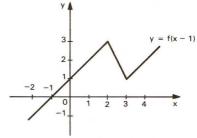
d)



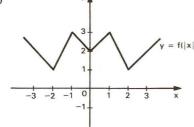
b)



e)



c)



a) são coincidentes.b) não têm pontos comuns.c) interceptam-se em dois pontos.

a) $\frac{4}{3}$

d) interceptam-se somente no ponto (-2, -2). e) interceptam-se somente no ponto $\left[-\frac{2}{3}, -\frac{2}{3}\right]$

b) $\frac{7e}{25}$	e) nenhuma das respostas anteriores
c) $\log_e \frac{25}{7}$	
	imeros naturais primos enumerados em ordem crescente e \mathbb{N}^* o confunção f de \mathbb{N}^* em P pondo $f(n)$ igual ao n -ésimo número primo emos afirmar:
a) $f^{-1}(11) < f^{-1}(7)$	
b) $f^{-1}(3) + f^{-1}(5)$ é um elemento de	e P.
c) f ⁻¹ (7) é um elemento de P.	
d) $f^{-1}(13) = 5$.	
e) $f(7) \cdot f(1) = 17$.	
	$\in \mathbb{Z} \mid 0 \leqslant x \leqslant 50$] e $Q = \{y \in \mathbb{Z} \mid 0 \leqslant y \leqslant 9\}$ definimos unidades do número x . Então o número de elementos do conjunto
a) 5 b) 4	c) 3 d) 2 e) 1
376. (UNICAP-87) Seja $f: [1, +\infty) \rightarrow [-3]$ [1, +\infty) \(\phi\) a função inversa de f, entâ	
a) 5 b) 1	c) $5 + 2\sqrt{6}$ d) $-5 + 2\sqrt{6}$ e) $5 - 2\sqrt{6}$
377. (ITA-88) Seja $f(x) = log_2(x^2 - 1)$,	$\forall x \in \mathbb{R}, x < -1$. A lei que define a inversa de f é:
a) $\sqrt{1+2^y}$, $\forall y \in \mathbb{R}$	d) $-\sqrt{1-2^y}$, $\forall y \in \mathbb{R}$, $y \leq 0$
b) $-\sqrt{1+2^y}$, $\forall y \in \mathbb{R}$	e) $1 + \sqrt{1 + 2^{y}}, \forall y \in \mathbb{R}, y \le 0$
c) $1 - \sqrt{1 + 2^y}$, $\forall y \in \mathbb{R}$	
270 (TT 101) C 11 C 2	
378. (ITA-91) Considere as afirmações:	
uma função par.	r e $g: \mathbb{R} \to \mathbb{R}$ uma função qualquer, então a composição $g \circ f$ é
função par.	e $g: \mathbb{R} \to \mathbb{R}$ uma função ímpar, então a composição $f \circ g$ é uma par e inversível, então $f^{-1}: \mathbb{R} \to \mathbb{R}$ é uma função ímpar.
	par e inversivei, entao j · : IR → IR e uma runção impar.
Então:	
a) apenas a afirmação (I) é falsa.	d) todas as afirmações são falsas.
b) apenas as afirmações (I) e (II) são	o fálsas. e) n.d.a.
c) apenas a afirmação (III) é verdad	eira.
376	

372. (FATEC-87) Seja a função $f: \mathbb{R} \to \mathbb{R}$ definida por f(x) = 3x + 4 e f^{-1} sua inversa. Os gráficos de $f \in f^{-1}$:

373. (ITA-85) Seja $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ definida em IR. Se g for a função inversa de f, o valor de $e^{g\left(\frac{7}{25}\right)}$

d) $e^{\left(\frac{7}{25}\right)^2}$

379. (ITA-90) Seja a função $f: \mathbb{R} - \{2\} \to \mathbb{R} - \{3\}$ definida por $f(x) = \frac{2x-3}{x-2} + 1$.

Sobre sua inversa podemos garantir que:

- a) não está definida, pois f não é injetora.
- b) não está definida, pois f não é sobrejetora.
- c) está definida por $f^{-1}(y) = \frac{y-2}{y-3}$, $y \ne 3$.
- d) está definida por $f^{-1}(y) = \frac{y+5}{y-3} 1, y \neq 3.$
- e) está definida por $f^{-1}(y) = \frac{2y-5}{y-3}$, $y \neq 3$.
- 380. (ITA-88) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função estritamente decrescente, isto é, quaisquer x e y reais com x < ytem-se f(x) > f(y). Dadas as afirmações:

$$I - f$$
 é injetora.

II — f pode ser uma função par.

III — Se f possui inversa, então sua inversa também é estritamente decrescente.

Podemos assegurar que:

- a) apenas as afirmações I e III são verdadeiras.
- b) apenas as afirmações II e III são falsas.
- c) apenas a afirmação I é falsa.
- d) todas as afirmações são verdadeiras.
- e) apenas a afirmação II é verdadeira.
- 381. (ITA-90) Seja f: R → R a função definida por

$$f(x) = \begin{cases} x + 2, \text{ se } x \leqslant -1 \\ x^2, \text{ se } -1 < x \leqslant 1 \\ 4, \text{ se } x > 1 \end{cases}$$

Lembrando que se $A \subset \mathbb{R}$ então $f^{-l}(A) = [x \in \mathbb{R} : f(x) \in A]$, considere as afirmações:

- (I) f não é injetora e f^{-1} ([3, 5]) = [4]. (II) f não é sobrejetora e f^{-1} ([3, 5]) = f^{-1} ([2, 6]). (III) f é injetora e f^{-1} ([0, 4]) = [-2, + ∞ [.

Então podemos garantir que:

- a) Apenas as afirmações II e III são falsas.
- b) As afirmações I e III são verdadeiras.
- c) Apenas a afirmação II é verdadeira.
- d) Apenas a afirmação III é verdadeira.
- e) Todas as afirmações são falsas.
- 382. (ITA-92) Dadas as funções $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$, ambas estritamente decrescentes e sobrejetoras, considere $h = f \circ g$. Então podemos afirmar que:
 - a) h é estritamente crescente, inversível e sua inversa é estritamente crescente.
 - b) h é estritamente decrescente, inversível e sua inversa é estritamente crescente.
 - c) h é estritamente crescente mas não é necessariamente inversível.
 - d) h é estritamente crescente, inversível e sua inversa é estritamente decrescente.
 - e) n.d.a.

Apêndice I - Equações irracionais

383. (PUC-SP-82) A solução da equação $x - \sqrt{2x+2} = 3$ é:

b) [-3; 2]

b) [-1; 0]

b) 97

b) -1

385. (PUC-SP-84) As raízes de $\sqrt[3]{x^2 - x - 1} = x - 1$ estão no intervalo:

386. (U.E.CE-82) A soma das raízes da equação $\sqrt[3]{x^2} - 2\sqrt[3]{x} - 15 = 0$ é:

387. (FGV-88) A soma das raízes da equação $\sqrt{x^2} + \sqrt{(x-1)^2} = 2$ é:

c) 2

384. (U.E.LONDRINA-84) O conjunto solução da equação $x - I = \sqrt{x + II}$, em \mathbb{R} , está contido no intervalo:

c) [-2; 5[

c) [0; 3]

c) 96

c) 1/2

d) 3

d)]3; 6]

d) [3; 7]

e) 7

e) [6; +∞[

e) [7; +∞]

e) -1/2

b) -1

a) 1

a) $\left|-\infty; 0\right|$

a) [-2; -1]

388.	(U.C.MG-81) O pro	duto das raízes da eq	$\frac{1}{3x+1} = 1$	$+\sqrt{2x-1}$ é:	
	a) -5	b) 5	c) 6	d) 9	e) 12
389.	(FGV-81) Uma das	soluções do seguinte	sistema de equações		
	$\begin{cases} \sqrt{\frac{x}{y}} - \sqrt{\frac{y}{x}} = -\frac{1}{2} \\ x + yx + y = 9 \end{cases}$	3 2			
	(x + yx + y = 9)				
	atende a qual das al				
				d) $x - y = 0$	e) $x - y = -1$
390.	(PUC-MG-92) Se x	$+\sqrt{y} = \frac{19}{9} e \sqrt{9x + }$	$5-\sqrt{y}=2$, a razâ	io $\frac{y}{x}$ é igual a:	
	a) 18	b) 24	c) 30	d) 32	e) 36
		Inequações Se o número real x		ão podemos concluir o	que:
	a) $x > \sqrt{2}$	b) $1 < x < 2$	c) $x = 0$	d) $x > 1$	e) $0 < x < 1$
392.	é um intervalo abert	Seja x um número re		$> \frac{x}{2}$. Então, o conju	unto de tais números
	a) $\frac{1}{4}$	b) $\frac{1}{2}$	c) 1	d) 2	e) 3
		g funções reais de va $g(x) = \frac{I}{\sqrt{I - x}}$.			
	a)]0, e[b)]0, 1[c) [e, e + 1]	d)]-1, 1[e)]1, +∞[
	Nota: $f \circ g$ é a lei d	efinida por $(f \circ g)(x)$	= f(g(x)) para cad	a x de seu domínio.	

Respostas dos Testes

```
157. d
                    40. a
                                          79. e
                                                             118. C
 1. c
                                          80. b
                                                              119. d
                    41. d
                    42. e
                                          81. c
                                                              120. a
3. a
                    43. c
                    44. d
                                          83. e
                                                             122. d
                                                             123. b
                    45. C
                                          84. C
                   46. b
                                          85. b
                                                             124, e
7. e
                   47. d
                                          86. b
                                                             125. c
8. e
                                                             126, e
                   48. a
                                          87. C
9. c
                                          88. C
                                                             127. e
10. e
                   49. a
                                                             128. d
11. e
                    50. c
12. b
                   51. c
                                                             129. C
                                                             130, a
13. b
                   52. C
                                          91. e
                                          92. b
14. e
                   53. e
                                                             131. e
                                          93. a
                                                             132. b
                                                                                  171. a
15. c
                    54. a
                                          94. a
                                                             133. d
                                                                                  172. b
16. c
                    55. C
                                          95. C
                                                                                  173. a
17. d
                    56. a
                                                             134. c
                                          96. e
                                                                                  174. b
                    57. c
                                                             135. b
18. d
                                          97. c
                                                                                  175. d
                    58. c
                                                             136. e
19. e
                                                             137. e
                                                                                  176. e
20. a
                    59. e
                                          98. a
                                         99. b
                                                             138. d
21. c
                    60. a
                                                                                  177. a
22. c
                    61. a
                                         100. e
                                                             139, a
                                                                                  178. e
                                                             140. d
                                                                                  179. e
23. e
                    62. C
                                         101. d
24. d
                    63. a
                                         102. e
                                                             141. a
                                                                                  180. d
                                                             142. b
                                                                                  181. b
25. b
                    64. C
                                         103. d
                                                              143. e
                                         104. e
                                                                                  182. a
26. a
                    65. a
                                                              144. d
                                                                                   183, d
27. c
                    66. a
                                         105. b
                                                             145. a
                                                                                   184. d
28. e
                    67. b
                                         106. e
29. d
                    68. d
                                         107. b
                                                             146. C
                                                                                   185. b
                                                             147. b
30. d
                    69. e
                                         108. c
                                                                                   186. d
                    70. a
                                         109. e
                                                              148. C
                                                                                   187. d
31. e
                                         110. a
                                                              149, b
                                                                                   188. b
32. c
                                         111. d
                                                                                   189. b
33. b
                                                              150. e
                                         112. d
                                                                                   190. b
34. C
                    73. a
                                                              151. e
                    74. b
                                         113. b
35. b
                                                              152. c
                                                                                   191. a
                                                                                   192. d
                    75. C
                                         114. c
                                                              153. a
                                         115. d
                                                              154. b
                                                                                   193. a
38. d
                    77. b
                                         116. e
                                                              155. e
                                                                                   194. b
                                                              156. b
39. d
                                                                                   195. e
```

RESPOSTAS DOS TESTES

196. a	236. b	276. e	316. b	356. e
197. d	237. a	277. c	317. a	357. c
198. a	238. b	278. b	318. e	358. b
199. b	239. a	279. c	319. c	359, b
200. d	240. a	280. e	320. b	360. b
201. d	241. e	281. c	321. c	361. a
202. e	242. d	282. c	322. d	362. e
203. a	243. b	283. c	323. c	363. d
204. e	244. e	284. d	324. d	364, c
205. d	245. d	285. c	325. b	365. c
206. d	246. c	286. c	326. e	366. b
207. c	247. c	287. e	327. d	367. d
208. a	248. a	288. c	328. c	368. b
209. b	249. d	289. d	329. e	369. a
210 . b	250. c	290. b	330. b	370. c
211. d	251. d	291. b	331. e	371. a
212. e	252. d	292 . c	332. b	372. d
213. e	253. b	293. d	333. e	373. a
214. e	254. c	294. a	334. c	374. b
215. a	255. c	295. b	335. a	375. a
216. d	256. c	296. c	336. a	376. e
217. c	257. e	297. b	337. d	377. b
218. d	258. b	298. a	338. c	378. e
219. e	259. c	299. e	339. b	379. e
220. a	260. c	300. b	340. a	380. a
221. c	261. d	301. c	341. a	381. c
222. c	262. d	302. a	342. d	382. a
223. e	263. a	303. b	343. b	383, e
224. c	264. c	304. a	344. b	384. d
225. e	265. b	305. a	345. d	385. c
226. b	266. d	306. e	346. b	386. a
227. a	267. c	307. b	347. b	387. d
228. a	268. b	308. b	348. b	388. b
229. a	269. d	309. e	349. c	389. a
230. c	270. b	310. b	350. e	390. e
231. d	271. c	311. b	351. e	391. e
232. d	272. a	312. a	352. a	392. d
233. b	273. d	313. c	353. d	393. b
234. b	274. d	314. e	354. c	
235. c	275. e	315. e	355. d	